Ability of circulating human hematopoietic lineage negative cells to support hematopoiesis.

J Cell Biochem

Endocrine Research Unit, College of Medicine, Mayo Clinic, Rochester, Minnesota; Rheumatology Department, Hospital Clinic, IDIBAPS, CIBERehd, Barcelona, Spain.

Published: January 2015

Hematopoietic stem cell (HSC) self-renewal is regulated by osteoblast and/or endothelial cells within the hematopoietic niche. However, the true identity of the supporting cells and the nature of the secreted factors remain uncertain. We developed a novel mouse model and analyzed whether circulating human peripheral hematopoietic lineage negative/AP+ (lin-/AP+) cells support hematopoiesis in vivo. Thus, immunocompromised (Rag) mice expressing thymidine kinase (Tk) under the control of the 3.6Col1α1 promoter (Tk-Rag) were treated with ganciclovir, resulting in osteoblast progenitor cell ablation and subsequent loss of hematopoiesis (evaluated by measuring mouse Ter119+ erythroid cells). Following hematopoietic cell depletion, human bone marrow-derived marrow stromal cells (MSCs) or lin-/AP+ cells were infused into Tk-Rag mice and compared with saline infusions. Ganciclovir significantly reduced (7.4-fold) Ter119+ cells in the bone marrow of Tk-Rag mice compared to saline injections. Infusion of either MSCs or lin-/AP+ cells into ganciclovir-treated mice resulted in a 3.3-fold and 2.7-fold increase (P < 0.01), respectively, in Ter119+ cells compared to mice receiving saline. Relative to lin-/AP- cells, lin-/AP+ cells expressed high levels of mesenchymal, endothelial, and hematopoiesis supporting genes. Thus, human peripheral blood lin-/AP+ cells represent a novel cell type capable of supporting hematopoiesis in a manner comparable to MSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729456PMC
http://dx.doi.org/10.1002/jcb.24942DOI Listing

Publication Analysis

Top Keywords

lin-/ap+ cells
12
cells
9
circulating human
8
hematopoietic lineage
8
cells support
8
support hematopoiesis
8
cells hematopoietic
8
mscs lin-/ap+
8
tk-rag mice
8
mice compared
8

Similar Publications

The mechanism by which interferon regulatory factor 8 (IRF8) mutation contributes to lymphomagenesis is unknown. We modeled IRF8 variants in B cell lymphomas and found that they affected the expression of regulators of antigen presentation. Expression of IRF8 mutants in murine B cell lymphomas suppressed CD4, but not CD8, activation elicited by antigen presentation and downmodulated CD74 and human leukocyte antigen (HLA) DM, intracellular regulators of antigen peptide processing/loading in the major histocompatibility complex (MHC) II.

View Article and Find Full Text PDF

Association of Vascular Risk Factors and CSF and Imaging Biomarkers With White Matter Hyperintensities in Former American Football Players.

Neurology

January 2024

From the VA San Diego Healthcare System (M.T.L., M.W.B., L.M.D.-W.), CA; Department of Psychiatry (M.T.L., S.J.B., M.W.B., L.M.D.-W.), University of California San Diego Health, La Jolla; Departments of Biostatistics (F.T.-Z., Y.T.), Epidemiology (R.A.), Environmental Health (M.D.M.), Biostatistics and Epidemiology Data Analytics Center (J.P., B.M., K.H.), Boston University School of Public Health, MA; Boston University Alzheimer's Disease Research Center (Y.T., J.B.M., M.L.A., R.A., R.C.C., R.A.S.), Boston University CTE Center; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine; Departments of Neurology (C.H.A., D.W.D.) and Psychiatry and Psychology (J.V.W.), Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale; Departments of Neurology (L.J.B.), Population Health and Ophthalmology, (L.J.B.), and Neurology (W.B.B.), NYU Grossman School of Medicine; Cleveland Clinic Lou Ruvo Center for Brain Health (C.B.), Las Vegas, NV; Department of Neurology (C.B.), University of Washington, Seattle; Department of Neurodegenerative Disease (H.Z.), and UK Dementia Research Institute (H.Z.), University College London Institute of Neurology, UK; Hong Kong Center for Neurodegenerative Diseases (H.Z.), China; Wisconsin Alzheimer's Disease Research Center (H.Z.), University of Wisconsin-Madison; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg; Department of Psychiatry and Neurochemistry (K.B.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; VA Northwest Mental Illness Research, Education, and Clinical Center (E.R.P.), Seattle, WA; Department of Psychiatry and Behavioral Sciences (E.R.P.), University of Washington School of Medicine, Seattle; Framingham Heart Study (R.A., J.B.M.); Slone Epidemiology Center (R.A.), Boston University, MA; Department of Neurosciences (S.J.B.), University of California San Diego; Psychiatry Neuroimaging Laboratory (M.J.C., A.P.L., I.K.K., M.E.S., S.B.), Departments of Psychiatry Radiology (M.E.S.), and Center for Clinical Spectroscopy (A.P.L.), Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (I.K.K.), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (J.L.C.), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas; Banner Alzheimer's Institute (E.M.R.), Phoenix; Department of Psychiatry (E.M.R.), University of Arizona, Phoenix; Arizona State University (E.M.R.), Phoenix; Translational Genomics Research Institute (E.M.R.), Phoenix; Arizona Alzheimer's Consortium (E.M.R.), Phoenix; and Department of Software Engineering and Information Technology (S.B.), École de technologie supérieure, Université du Québec, Montréal, Canada.

Background And Objectives: Recent data link exposure to repetitive head impacts (RHIs) from American football with increased white matter hyperintensity (WMH) burden. WMH might have unique characteristics in the context of RHI beyond vascular risk and normal aging processes. We evaluated biological correlates of WMH in former American football players, including markers of amyloid, tau, inflammation, axonal injury, neurodegeneration, and vascular health.

View Article and Find Full Text PDF

In diffuse large B-cell lymphoma (DLBCL), the transcription factor IRF8 is the target of a series of potentially oncogenic events, including, chromosomal translocation, focal amplification, and super-enhancer perturbations. IRF8 is also frequently mutant in DLBCL, but how these variants contribute to lymphomagenesis is unknown. We modeled IRF8 mutations in DLBCL and found that they did not meaningfully impact cell fitness.

View Article and Find Full Text PDF

Angiogenesis and MYC expression associate with poor outcome in diffuse large B-cell lymphoma (DLBCL). MYC promotes neo-vasculature development but whether its deregulation in DLBCL contributes to angiogenesis is unclear. Examination of this relationship may uncover novel pathogenic regulatory circuitry as well as anti-angiogenic strategies in DLBCL.

View Article and Find Full Text PDF

Mitochondria can function as signaling organelles, and part of this output leads to epigenetic remodeling. The full extent of this far-reaching interplay remains undefined. Here, we show that MYC transcriptionally activates IDH2 and increases alpha-ketoglutarate (αKG) levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!