The regulatory interactions between AUXIN RESPONSE FACTORS (ARFs) and Aux/IAA repressors play a central role in auxin signal transduction. Yet, the systems properties of this regulatory network are not well established. We generated a steroid-inducible ARF5/MONOPTEROS (MP) transgenic background to survey the involvement of this factor in the transcriptional regulation of the entire Aux/IAA family in Arabidopsis thaliana. Target genes of ARF5/MP identified by this approach were confirmed by chromatin immunoprecipitation, in vitro gel retardation assays and gene expression analyses. Our study shows that ARF5/MP is indispensable for the correct regulation of nearly one-half of all Aux/IAA genes, and that these targets coincide with distinct subclades. Further, genetic analyses demonstrate that the protein products of multiple Aux/IAA targets negatively feed back onto ARF5/MP activity. This work indicates that ARF5/MP broadly influences the expression of the Aux/IAA gene family, and suggests that such regulation involves the activation of specific subsets of redundantly functioning factors. These groups of factors may then act together to control various processes within the plant through negative feedback on ARF5. Similar detailed analyses of other Aux/IAA-ARF regulatory modules will be required to fully understand how auxin signal transduction influences virtually every aspect of plant growth and development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.12994 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
Class II photolyases (PLs) are a distant subclade in the photolyase/cryptochrome superfamily, displaying a unique Trp-Tyr tetrad for photoreduction and exhibiting a lower quantum yield (QY) of DNA repair (49%) than class I photolyases (82%) [M. Zhang, L. Wang, S.
View Article and Find Full Text PDFUnlabelled: Plant-infecting alphaflexiviruses cause moderate to severe diseases in economically important crops worldwide. In the present study, we identified nine putative novel alphaflexiviruses in nine plant species by exploring the publicly available plant transcriptome data in Sequence Read Archive (SRA) database. Coding-complete genomes of all the identified viruses were recovered and contained five to six open reading frames (ORFs).
View Article and Find Full Text PDFNew Phytol
December 2024
School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
Changes in chromosome numbers are a prominent driver of plant evolution, impacting ecological diversification, stress tolerance, and phenotypes. ChromEvol is a widely used software tool for deciphering patterns of chromosome-number change along a phylogeny of interest. It evaluates the fit of alternative models to the data, estimates transition rates of different types of events, and infers the expected number of events along each branch of the phylogeny.
View Article and Find Full Text PDFZootaxa
June 2024
Thackeray Wildlife Foundation; Mumbai; 400051; India.
We describe five new species allied to Cnemaspis beddomei from the Southern Western Ghats, Tamil Nadu, India using morphological data and mitochondrial sequence divergence. The new species are members of the beddomei and anamudiensis subclades within the beddomei clade and are from boulder habitats in evergreen forests in Tenkasi (Cnemaspis tenkasiensis sp. nov.
View Article and Find Full Text PDFFront Vet Sci
November 2024
Department of Virology, Institute of Veterinary Medicine of Serbia, Belgrade, Serbia.
Introduction: West Nile Virus, an emerging zoonotic pathogen, has been circulating in Serbia for over a decade, with its first detection in mosquitoes in 2010. Since then, the virus has led to increasing cases in both animals and humans, peaking in 2018 with 415 human cases and 36 fatalities. This study aimed to explore the phylogenetic relationships between previously sequenced West Nile virus strains from Serbia and those sequenced in this study, while also identifying possible virulence factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!