Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study was carried out to develop a cost-effective and practicable sorbent for application in abrupt perfluorooctane sulphonate (PFOS) pollution accidents. The main merit of this work was that a waste material, namely construction and demolition (C&D) waste, was employed as a raw base material for the sorbent synthesis. The waste material underwent alkaline fusion-hydrothermal synthesis and a cationic surfactant cetyltrimethyl ammonium bromide (CTAB) modification process to form a CTAB-modified sorbent (CMCDSS). Experimental results showed that PFOS concentrations and solution pH had significant effect on the PFOS sorption on construction and demolition waste synthesized sorbent (CDSS) and CMCDSS (using 0.2CMCDSS as representative). PFOS could be effectively and rapidly adsorbed on CMCDSS, and sorption equilibrium was achieved within 2.5 h. The sorption amounts of PFOS on CMCDSSs enhanced along with the increase in CTAB loading amounts. Moreover, the CMCDSS can be applied effectively under acidic condition at pH 2-6 and various removal mechanisms were clarified at different sorption conditions. Accordingly, this work developed a novel and applicable material for dealing with abrupt environmental PFOS contamination accidents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2014.912253 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!