Nystatin, one of the tetraene antifungal antibiotics, is very sensitive to light. Thus, when nystatin is exposed to natural daylight, it is photodegraded to products of lower biological activity. In this work, the photodegradation kinetics of nystatin was monitored by a UV-Vis spectrophotometry method. The absorbance spectra of the nystatin, exposed to a 366 nm UV lamp, were recorded at different periods of time. By application of factor analysis to the absorbance data matrix, three absorbing chemical species, coexisting in the reaction system, were detected. The soft-modeling multivariate curve resolution-alternating least squares analysis of the evolutionary absorbance data revealed that nystatin undergoes photodegradation in a two-step consecutive manner. Hard-modeling data analysis suggested that reaction has first-order kinetics in the first step and zero-order kinetics in the second step. The reaction rate constants of the first and second steps were estimated as 0.0929 (+/-0.0076) and 0.0052 (+/-0.0016)/min, respectively. Finally, the pure spectra of the resolved chemical species were calculated.

Download full-text PDF

Source
http://dx.doi.org/10.5740/jaoacint.13-110DOI Listing

Publication Analysis

Top Keywords

uv-vis spectrophotometry
8
nystatin exposed
8
absorbance data
8
chemical species
8
nystatin
6
photodegradation study
4
study nystatin
4
nystatin uv-vis
4
spectrophotometry chemometrics
4
chemometrics modeling
4

Similar Publications

Chemical insight into pros and cons of coffees from different regions.

Sci Rep

January 2025

Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233, Gdańsk, Poland.

The main aim of this work was to study the chemical composition of eighteen ground coffees from different countries and continents with regard to the content of hazardous substances as radioactive elements (K, Ra, Ra, U, U and Cs), metals, including heavy metals, aluminum and some microelements (V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as well as substances that have a positive effect on human health and well-being (polyphenols, proteins, fats and caffeine). The tests were carried out before and after the brewing process using the following techniques: gamma and beta spectrometry, a microwave-induced plasma optical emission spectrometer (MIP-OES), gravimetric method, UV-Vis spectrophotometry as well as thin-layer chromatography. The leaching percentage of certain elements/compounds in coffee infusions was also measured.

View Article and Find Full Text PDF

Synthesis of an antimicrobial chitosan film impregnated with ZnO nanoparticles phytosynthesized with Ruta graveolens plant extract.

Microb Pathog

December 2024

Tecnológico Nacional de México / Instituto Tecnológico de Toluca, División de Estudios de Posgrado e Investigación, Av. Tecnológico S/N Col. Agrícola Bellavista, Metepec, México, C.P. 52149.

In this study, biopolymer of chitosan-based films were synthesized, which were impregnated with zinc oxide nanoparticles (ZnO NPs) at concentrations of 0, 1, 5 and 10 % w:v to obtain a film with microbicide properties and non-toxic for humans. The ZnO NPs were phytosynthesized with ethanolic extract of Ruta graveolens, by UV-Vis spectrophotometry and Tauc equation were estimated their Band gap energy=3.37 eV at wavelength of 302 nm.

View Article and Find Full Text PDF

Monitoring paracetamol levels in environmental samples is essential, as this widely used pharmaceutical can degrade water quality and adversely affect both ecosystems and human health. To address this issue, a novel, simple, sensitive, and accurate method has been developed. This method employs a functionalized ionic liquid, 2-(4-hydroxybenzyl)hydrazinium chloride ([HBH][Cl]), specifically designed to structurally mimic paracetamol and function as a complexing agent.

View Article and Find Full Text PDF

The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.

View Article and Find Full Text PDF

The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!