The RNA exosome is the major 3'-5' RNA degradation machine of eukaryotic cells and participates in processing, surveillance and turnover of both nuclear and cytoplasmic RNA. In both yeast and human, all nuclear functions of the exosome require the RNA helicase MTR4. We show that the Arabidopsis core exosome can associate with two related RNA helicases, AtMTR4 and HEN2. Reciprocal co-immunoprecipitation shows that each of the RNA helicases co-purifies with the exosome core complex and with distinct sets of specific proteins. While AtMTR4 is a predominantly nucleolar protein, HEN2 is located in the nucleoplasm and appears to be excluded from nucleoli. We have previously shown that the major role of AtMTR4 is the degradation of rRNA precursors and rRNA maturation by-products. Here, we demonstrate that HEN2 is involved in the degradation of a large number of polyadenylated nuclear exosome substrates such as snoRNA and miRNA precursors, incompletely spliced mRNAs, and spurious transcripts produced from pseudogenes and intergenic regions. Only a weak accumulation of these exosome substrate targets is observed in mtr4 mutants, suggesting that MTR4 can contribute, but plays rather a minor role for the degradation of non-ribosomal RNAs and cryptic transcripts in Arabidopsis. Consistently, transgene post-transcriptional gene silencing (PTGS) is marginally affected in mtr4 mutants, but increased in hen2 mutants, suggesting that it is mostly the nucleoplasmic exosome that degrades aberrant transgene RNAs to limit their entry in the PTGS pathway. Interestingly, HEN2 is conserved throughout green algae, mosses and land plants but absent from metazoans and other eukaryotic lineages. Our data indicate that, in contrast to human and yeast, plants have two functionally specialized RNA helicases that assist the exosome in the degradation of specific nucleolar and nucleoplasmic RNA populations, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140647PMC
http://dx.doi.org/10.1371/journal.pgen.1004564DOI Listing

Publication Analysis

Top Keywords

rna helicases
16
rna
9
exosome
9
helicases atmtr4
8
atmtr4 hen2
8
nuclear exosome
8
mtr4 mutants
8
mutants suggesting
8
hen2
6
degradation
6

Similar Publications

Although tamoxifen is commonly utilized as adjuvant therapy for Estrogen Receptor alpha (ERα)-positive breast cancer patients, approximately 30-50% of individuals treated with tamoxifen experience relapse. Therefore, it is essential to investigate additional factors besides ERα that influence the estrogen response. In this study, cross-analysis of databases were performed, and the results revealed a significant association between LINC00626 and ERα signaling as well as increased expression levels of this gene in tamoxifen-resistant cells.

View Article and Find Full Text PDF

Objective: The emergence of resistance-associated substitutions (RASs) poses a significant challenge to the effective treatment of hepatitis C virus (HCV) infection using direct-acting antivirals. This study's objective was to observe the prevalence of HCV genotypes and RAS within the Former Soviet Union (FSU) countries.

Methods: We analysed 60 NS3, 313 NS5A and 1119 NS5B sequences of HCV deposited in open-access databases from 11 FSU countries for the prevalence of genotypes and the presence of RAS using the Geno2Pheno software.

View Article and Find Full Text PDF

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

Background: Pancreatic cancer is one of the most malignant abdominal tumors. DDX60 has been shown to be associated with a variety of tumor biological processes. However, DDX60 in pancreatic cancer has not been reported.

View Article and Find Full Text PDF

Background: The sustained activation of androgen receptor splice variant-7 (AR-V7) is a key factor in the resistance of castration-resistant prostate cancer (CRPC) to second-generation anti-androgens such as enzalutamide (ENZ). The AR/AR-V7 protein is regulated by the E3 ubiquitin ligase STUB1 and a complex involving HSP70, but the precise mechanism remains unclear.

Methods: High-throughput RNA sequencing was used to identify differentially expressed circular RNAs (circRNAs) in ENZ-resistant and control CRPC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!