Synthetic cellular logic gates are primarily built from gene circuits owing to their inherent modularity. Single proteins can also possess logic gate functions and offer the potential to be simpler, quicker, and less dependent on cellular resources than gene circuits. However, the design of protein logic gates that are modular and integrate with other cellular components is a considerable challenge. As a step toward addressing this challenge, we describe the design, construction, and characterization of AND, ORN, and YES logic gates built by introducing disulfide bonds into RG13, a fusion of maltose binding protein and TEM-1 β-lactamase for which maltose is an allosteric activator of enzyme activity. We rationally designed these disulfide bonds to manipulate RG13's allosteric regulation mechanism such that the gating had maltose and reducing agents as input signals, and the gates could be toggled between different gating functions using redox agents, although some gates performed suboptimally.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410912 | PMC |
http://dx.doi.org/10.1021/sb500254g | DOI Listing |
Phys Rev Lett
December 2024
Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea and Division of Quantum Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.
High-dimensional multipartite entanglement plays a crucial role in quantum information science. However, existing schemes for generating such entanglement become complex and costly as the dimension of quantum units increases. In this Letter, we overcome the limitation by proposing a significantly enhanced linear optical heralded scheme that generates the d-level N-partite Greenberger-Horne-Zeilinger (GHZ) state with single-photon sources and linear operations.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Inria Paris, Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France.
Given some group G of logical gates, for instance the Clifford group, what are the quantum encodings for which these logical gates can be implemented by simple physical operations, described by some physical representation of G? We study this question by constructing a general form of such encoding maps. For instance, we recover that the ⟦5,1,3⟧ and Steane codes admit transversal implementations of the binary tetrahedral and binary octahedral groups, respectively. For bosonic encodings, we show how to obtain the GKP and cat qudit encodings by considering the appropriate groups, and essentially the simplest physical implementations.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Quantum error correction is believed to be essential for scalable quantum computation, but its implementation is challenging due to its considerable space-time overhead. Motivated by recent experiments demonstrating efficient manipulation of logical qubits using transversal gates [Bluvstein et al., Nature (London) 626, 58 (2024)NATUAS0028-083610.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China.
CRISPR-Cas-based technology, emerging as a leading platform for molecular assays, has been extensively researched and applied in bioanalysis. However, achieving simultaneous and highly sensitive detection of multiple nucleic acid targets remains a significant challenge for most current CRISPR-Cas systems. Herein, a CRISPR Cas12a based calibratable single particle counting-mediated biosensor was constructed for dual RNAs logic and ultra-sensitive detection in one tube based on DNA Tetrahedron (DTN)-interface supported fluorescent particle probes coupled with a novel synergistic cascaded strategy between CRISPR Cas13a system and strand displacement amplification (SDA).
View Article and Find Full Text PDFNat Commun
December 2024
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.
Two-dimensional (2D) semiconductors, combining remarkable electrical properties and mechanical flexibility, offer fascinating opportunities for flexible integrated circuits (ICs). Despite notable progress, so far the showcased 2D flexible ICs have been constrained to basic logic gates and ring oscillators with a maximum integration scale of a few thin film transistors (TFTs), creating a significant disparity in terms of circuit scale and functionality. Here, we demonstrate medium-scale flexible ICs integrating both combinational and sequential elements based on 2D molybdenum disulfide (MoS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!