A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles. | LitMetric

Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles.

ACS Nano

School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States.

Published: September 2014

Plasmonic nanostructures support strong electromagnetic field enhancement or optical "hot spots" that are accompanied by local heat generation. This heating effect is generally seen as an obstacle to stable trapping of particles on a plasmonic substrate. In this work, instead of treating the heating effect as a hindrance, we utilized the collective photoinduced heating of the nanostructure array for high-throughput trapping of particles on a plasmonic nanostructured substrate. The photoinduced heating of the nanostructures is combined with an ac electric field of less than 100 kHz, which results in creation of a strong electrothermal microfluidic flow. This flow rapidly transports suspended particles toward the plasmonic substrate, where they are captured by local electric field effects. This work is envisioned to have application in biosensing and surface-enhanced spectroscopies such as SERS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn502294wDOI Listing

Publication Analysis

Top Keywords

particles plasmonic
16
plasmonic nanostructures
8
trapping particles
8
plasmonic substrate
8
photoinduced heating
8
electric field
8
plasmonic
5
photothermal heating
4
heating enabled
4
enabled plasmonic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!