A functional polymorphism in CSF1R gene is a novel susceptibility marker for lung cancer among never-smoking females.

J Thorac Oncol

*Department of Biochemistry and Cell Biology and †Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea; ‡Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Korea; §Biostatistics Center, School of Medicine, Kyungpook National University, Daegu, Korea; ‖D&P Biotech, Inc., Daegu, Korea; ¶Department of Thoracic and Cardiovascular Surgery, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea; #Genomic Medicine Institute, Cancer Research Institute, Seoul National University, Seoul, Korea; **Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul, Korea; ††Department of Preventive Medicine, Seoul National University School of Medicine, Seoul, Korea; ‡‡Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea; and §§Cancer Research Institute, Korea University, Seoul, Korea.

Published: November 2014

Introduction: It has been estimated that the proportion of never-smokers among females with lung cancer is 53% worldwide and 75% in Korea. We conducted a two-stage study to identify genetic factors responsible for lung cancer susceptibility in female never-smokers.

Materials And Methods: In a discovery set, 1969 potentially functional single nucleotide polymorphisms (SNPs) of 1151 genes, which were related to cancer development and progression, were evaluated using the Affymetrix custom-made GeneChip in 181 female never-smokers with lung cancer and 179 controls. A replication study was performed on an independent cohort of 596 cases and 1194 healthy controls.

Results: Sixteen SNPs with p < 0.05 for genotype distribution in the discovery set were enrolled in the replication study. Among 16 SNPs, three SNPs (colony-stimulating factor 1 receptor [CSF1R] rs10079250A>G, tumor protein p63 [TP63] rs7631358G>A, and corepressor interacting with RBPJ 1 [CIR1] rs13009079T>C) were found to be significantly associated with lung cancer in the same direction as the discovery set. Homology-based model for CSF1R indicated that the rs10079250A>G leads to increased positive charge of CSF-binding region of CSF1R, thereby increasing the chance of binding between CSF and CSF1R. In addition, this SNP was found to increase the phosphorylation of a mitogen-activated protein kinase, JNK.

Conclusions: Our results suggest that the three SNPs, particularly CSF1R rs10079250, may contribute to lung cancer susceptibility in never-smoking females.

Download full-text PDF

Source
http://dx.doi.org/10.1097/JTO.0000000000000310DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
discovery set
12
never-smoking females
8
cancer susceptibility
8
replication study
8
three snps
8
cancer
7
lung
6
csf1r
5
snps
5

Similar Publications

TP53 germline testing and hereditary cancer: how somatic events and clinical criteria affect variant detection rate.

Genome Med

January 2025

Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain.

Background: Germline heterozygous pathogenic variants (PVs) in TP53 cause Li-Fraumeni syndrome (LFS), a condition associated with increased risk of multiple tumor types. As the associated cancer risks were refined over time, clinical criteria also evolved to optimize diagnostic yield. The implementation of multi-gene panel germline testing in different clinical settings has led to the identification of TP53 PV carriers outside the classic LFS-associated cancer phenotypes, leading to a broader cancer phenotypic redefinition and to the renaming of the condition as "heritable TP53-related cancer syndrome" (hTP53rc).

View Article and Find Full Text PDF

Background: Whether the intake of whole grain foods can protect against lung cancer is a long-standing question of considerable public health import, but the epidemiologic evidence has been limited. Therefore we aim to investigate the relationship between whole grain food consumption and lung cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) cohort.

Methods: Diet was assessed with a self-administered Diet History Questionnaire (DHQ) at baseline.

View Article and Find Full Text PDF

Background: Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients.

View Article and Find Full Text PDF

B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is a disease related to inflammation. Proinflammatory cytokines such as interleukin 17 (IL-17) can induce cancer cell proliferation, metastasis and immune escape. Although NSCLC immune escape is partly due to the interaction between PD-1 and PD-L1 and PD-L1 expression can be upregulated in cancer cells upon stimulation with IL-17, the underlying mechanism of IL-17-triggered PD-L1 gene transcription in NSCLC cells remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!