Factors affecting matrix degradation in protein-loaded microgels were investigated for dextran-based microgels, the sugar-binding protein Concanavalin A (ConA), and the dextran-degrading enzyme Dextranase. For this system, effects of enzyme, protein, and glucose concentrations, as well as pH, were considered. Microgel network degradation was monitored by micromanipulator-assisted light microscopy, whereas enzyme and protein distributions were monitored by confocal microscopy. Results show that Dextranase-mediated microgel degradation increased with increasing enzyme concentration, whereas an increased ConA loading in the dextran microgels caused a concentration-dependent decrease in microgel degradation. In the presence of glucose, competitive release of microgel-bound ConA restored the microgel degradation observed in the absence of ConA. To clarify effects of mass transport limitations, microgel degradation was compared to that of non-cross-linked dextran, demonstrating that ConA limits enzyme substrate access in dextran microgels primarily through pore blocking and induction of pore shrinkage. The experimentally observed effects were qualitatively captured by a modified Michaelis-Menten approach for spherical symmetry, in which network blocking by ConA was included. Taken together, the results demonstrate that matrix degradation of protein-loaded microgels depends sensitively on a number of factors, which need to be considered in the use of microgels in biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm5009525 | DOI Listing |
J Sci Food Agric
January 2025
Laboratorio de Investigación, Desarrollo y Evaluación de Alimentos (LIDEA), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Santa Fe, Argentina.
Background: The antioxidant capacity of anthocyanins (AC) rapidly degrades during storage, highlighting the need for their stabilization. The conformational properties and high proline content of sodium caseinate (NaCAS), combined with the formation of NaCAS microgels in the presence of tara gum (TG) and acid gelation, suggest its potential as an effective stabilizing or encapsulating agent of AC.
Results: Spectrofluorimetric results suggest the formation of a complex between NaCAS and AC.
Front Immunol
January 2025
Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States.
Introduction: Inflammation is a vital immune response, tightly orchestrated through both biochemical and biophysical cues. Dysregulated inflammation contributes to chronic diseases, highlighting the need for novel therapies that modulate immune responses with minimal side effects. While several biochemical pathways of inflammation are well understood, the influence of physical properties such as substrate curvature on immune cell behavior remains underexplored.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Tissues form during development through mechanical compaction of their extracellular matrix (ECM) and shape morphing, processes that result in complex-shaped structures that contribute to tissue function. While observed in vivo, control over these processes in vitro to understand both tissue development and guide tissue formation has remained challenging. Here, we use combinations of mesenchymal stromal cell spheroids and hydrogel microparticles (microgels) with varied hydrolytic stability to fabricate programmable and dynamic granular composites that control compaction and tissue formation over time.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
The progression of intervertebral disc degeneration (IVDD) is associated with increased cell apoptosis and reduced extracellular matrix (ECM) production, both of which are driven by ongoing inflammation. Thus, alleviating the acidic inflammatory microenvironment and mitigating the apoptosis of nucleus pulposus cells (NPCs) are essential for intervertebral disc (IVD) regeneration. Regulating pH levels in the local environment can reduce inflammation and promote tissue recovery.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey.
Hematoxylin (HT) is a natural staining dye used in histopathology, often combined with Eosin for H&E staining. A poly(hematoxylin-co-l-lysine) (p(HT-co-l)) nanonetwork was synthesized through a one-step Mannich condensation reaction using formaldehyde as a linking agent. The resulting p(HT-co-l) nanogels had an average size of about 200 nm and exhibited a smooth surface and desirable functional groups such as -OH, -NH, and -COOH, as recognized by FT-IR analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!