Neuronal somata and extrasomal compartments play distinct roles during synapse formation between Lymnaea neurons.

J Neurosci

Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada

Published: August 2014

Proper synapse formation is pivotal for all nervous system functions. However, the precise mechanisms remain elusive. Moreover, compared with the neuromuscular junction, steps regulating the synaptogenic program at central cholinergic synapses remain poorly defined. In this study, we identified different roles of neuronal compartments (somal vs extrasomal) in chemical and electrical synaptogenesis. Specifically, the electrically synapsed Lymnaea pedal dorsal A cluster neurons were used to study electrical synapses, whereas chemical synaptic partners, visceral dorsal 4 (presynaptic, cholinergic), and left pedal dorsal 1 (LPeD1; postsynaptic) were explored for chemical synapse formation. Neurons were cultured in a soma-soma or soma-axon configuration and synapses explored electrophysiologically. We provide the first direct evidence that electrical synapses develop in a soma-soma, but not soma-axon (removal of soma) configuration, indicating the requirement of gene transcription regulation in the somata of both synaptic partners. In addition, the soma-soma electrical coupling was contingent upon trophic factors present in Lymnaea brain-conditioned medium. Further, we demonstrate that chemical (cholinergic) synapses between soma-soma and soma-axon pairs were indistinguishable, with both exhibiting a high degree of contact site and target cell type specificity. We also provide direct evidence that presynaptic cell contact-mediated, clustering of postsynaptic cholinergic receptors at the synaptic site requires transmitter-receptor interaction, receptor internalization, and a protein kinase C-dependent lateral migration toward the contact site. This study provides novel insights into synaptogenesis between central neurons revealing both distinct and synergistic roles of cell-cell signaling and extrinsic trophic factors in executing the synaptogenic program.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615512PMC
http://dx.doi.org/10.1523/JNEUROSCI.1651-14.2014DOI Listing

Publication Analysis

Top Keywords

synapse formation
12
soma-soma soma-axon
12
synaptogenic program
8
cholinergic synapses
8
pedal dorsal
8
electrical synapses
8
synaptic partners
8
provide direct
8
direct evidence
8
trophic factors
8

Similar Publications

Evolutionary plasticity and functional repurposing of the essential metabolic enzyme MoeA.

Commun Biol

January 2025

Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France.

MoeA, also known as gephyrin in higher eukaryotes, is an enzyme essential for molybdenum cofactor (Moco) biosynthesis and involved in GABA and GlyR receptor clustering at the synapse in animals. We recently discovered that Actinobacteria have a repurposed version of MoeA (Glp) linked to bacterial cell division. Since MoeA exists in all domains of life, our study explores how it gained multifunctionality over time.

View Article and Find Full Text PDF

The anti-inflammatory effect of phellodendrine (PHE), derived from Phellodendri Chinensis Cortex, has been verified in previous studies. Major depressive disorder (MDD) is associated with immune dysregulation and inflammatory processes. This study aimed to explore the therapeutic effects of PHE on MDD through network pharmacology and experimental validation.

View Article and Find Full Text PDF

Introduction: Bipolar 2 disorder (BD2) is an independent disease with specific familial aggregation, significant functional impairment, specific treatment challenges and several distinctive clinical features. However, unlike bipolar 1 disorder, studies investigating causal and functional genes are lacking. This study aims to identify and prioritize causal genetic variants and genes for BD2 by analyzing brain-specific gene expression markers, to improve the understanding of its genetic underpinnings and support advancements in diagnosis, treatment and prognosis.

View Article and Find Full Text PDF

Diabetic keratopathy (DK), a significant complication of diabetes, often leads to corneal damage and vision impairment. Effective models are essential for studying DK pathogenesis and evaluating potential therapeutic interventions. This study developed a novel biomimetic full-thickness corneal model for the first time, incorporating corneal epithelial cells, stromal cells, endothelial cells, and nerves to simulate DK conditions .

View Article and Find Full Text PDF

Specific plasma metabolite profile in intestinal Behçet's syndrome.

Orphanet J Rare Dis

January 2025

Department of Rheumatology and Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.

Background: Intestinal Behçet's syndrome (IBS) has high morbidity and mortality rates with serious complications. However, there are few specific biomarkers for IBS. The purposes of this study were to investigate the distinctive metabolic changes in plasma samples between IBS patients and healthy people, active IBS and inactive IBS patients, and to identify candidate metabolic biomarkers which would be useful for diagnosing and predicting IBS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!