Structural basis of an engineered dual-specific antibody: conformational diversity leads to a hypervariable loop metal-binding site.

Protein Eng Des Sel

Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA Center for Biochemical and Biophysical Studies, Northern Illinois University, DeKalb, IL 60115, USA

Published: October 2014

To explore dual-specificity in a small protein interface, we previously generated a 'metal switch' anti-RNase A VHH antibody using a combinatorial histidine library approach. While most metal-binding sites in proteins are found within rigid secondary structure, the engineered VHH antibody (VHH(metal)), which contained three new histidine residues, possessed metal-binding residues within the flexible hypervariable loops. Here, crystal structure analysis of the free and bound states of VHH(metal) reveals the structural determinants leading to dual-function. Most notably, CDR1 is observed in two distinct conformations when adopting the metal or RNase A bound states. Furthermore, mutagenesis studies revealed that one of the engineered residues, not located in the metal-binding pocket, contributed indirectly to metal recognition, likely through influencing CDR1 conformation. Despite these changes, VHH(metal) possesses a relatively minor energetic penalty toward binding the original antigen, RNase A (~1 kcal/mol), where the engineered gain-of-function metal-binding residues are observed to possess a mix of favorable and unfavorable contributions towards RNase A recognition. Ultimately, the conformationally distinct metal-switch interface architecture reflects the robust, library-based strategy used to produce VHH(metal). These results also suggest that even small protein interfaces, such as VHH, may be structurally and energetically forgiving in adopting novel function, while maintaining original function.

Download full-text PDF

Source
http://dx.doi.org/10.1093/protein/gzu033DOI Listing

Publication Analysis

Top Keywords

small protein
8
vhh antibody
8
metal-binding residues
8
bound states
8
metal-binding
5
structural basis
4
engineered
4
basis engineered
4
engineered dual-specific
4
dual-specific antibody
4

Similar Publications

Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.

View Article and Find Full Text PDF

CCL3 as a novel biomarker in the diagnosis of necrotizing enterocolitis.

BMC Pediatr

December 2024

Department of Clinical Laboratory, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, NO 136 Zhongshaner Road, Yuzhong Distrit, Chongqing, 400014, China.

Objectives: Neonatal necrotizing enterocolitis (NEC) is a common intestinal disease that threatens the lives of newborns and is characterized by ischemic necrosis of the small intestine and colon. As early diagnosis of NEC improves prognosis, the identification of new or complementary biomarkers is of great importance. In this study, we evaluate the diagnostic value of CCL3 in NEC and compare its effectiveness with other commonly used biomarkers, such as procalcitonin (PCT) and C-reactive protein (CRP).

View Article and Find Full Text PDF

A new aguanidine-based bis Schiff base for highly selective Al recognition, BSA binding studies and theoretical calculations.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Agriculture and Bioengineering, Heze University, Heze 274500, China. Electronic address:

Herin, the successful synthesis of a bis Schiff base (L) has been achieved using 2-hydroxy-1-naphthaldehyde and 1,3-diaminoguanidine as raw materials, which was further characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance hydrogen spectrum. Moreover, spectroscopic experiments demonstrated that the probe L showed good selectivity and visual detectability for Al. Its detection limit (DL) is 2.

View Article and Find Full Text PDF

Effect of Medium Chain Triglycerides and Whey Protein Isolate Preloads on Glycaemia in Type 2 Diabetes: A randomised crossover study.

Am J Clin Nutr

December 2024

MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom. Electronic address:

Background: Small nutritional preloads can reduce postprandial glucose excursions in individuals with and without metabolic syndrome or T2D. However, most studies have focused on preloads administered before single meals and have predominantly used protein-based preloads.

Objective: To investigate the effects of sequential consumption of medium chain triglycerides (MCT) and whey protein isolate (WPI) preloads before breakfast lunch and dinner on postprandial, diurnal and 24h glycaemia in individuals with T2D.

View Article and Find Full Text PDF

Recent advances in spatiotemporal control of the CRISPR/Cas9 system.

Colloids Surf B Biointerfaces

December 2024

School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, Hubei 430042, China. Electronic address:

The CRISPR/Cas9 gene-editing technology, derived from the adaptive immune mechanisms of bacteria, has demonstrated remarkable advantages in fields such as gene function research and the treatment of genetic diseases due to its simplicity in design, precise targeting, and ease of use. Despite challenges such as off-target effects and cytotoxicity, effective spatiotemporal control strategies have been achieved for the CRISPR/Cas9 system through precise regulation of Cas9 protein activity as well as engineering of guide RNAs (gRNAs). This review provides a comprehensive analysis of the core components and functional mechanisms underlying the CRISPR/Cas9 system, highlights recent advancements in spatiotemporal control strategies, and discusses future directions for development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!