Therapeutic effects of exon skipping and losartan on skeletal muscle of mdx mice.

Pathol Int

College of Veterinary Medicine, School of Medicine, Kyungpook National University, Daegu, Korea; Stem Cell Therapeutic Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.

Published: August 2014

Various attempts have been made to find treatments for Duchenne muscular dystrophy (DMD) patients. Exon skipping is one of the promising technologies for DMD treatment by restoring dystropin protein, which is one of the muscle components. It is well known that losartan, an angiotensin II type1 receptor blocker, promotes muscle regeneration and differentiation by lowering the level of transforming growth factor-beta1 signaling. In this study, we illustrated the combined effects of exon skipping and losartan on skeletal muscle of mdx mice. We supplied mdx mice with losartan for 2 weeks before exon skipping treatment. The losartan with the exon skipping group showed less expression of myf5 than the losartan treated group. Also the losartan with exon skipping group recovered normal muscle architecture, in contrast to the losartan group which still showed many central nuclei. However, the exon skipping efficiency and the restoration of dystrophin protein were lower in the losartan with exon skipping group compared to the exon skipping group. We reveal that losartan promotes muscle regeneration and shortens the time taken to restore normal muscle structure when combined with exon skipping. However, combined treatment of exon skipping and losartan decreases the restoration of dystrophin protein meaning decrease of exon skipping efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pin.12190DOI Listing

Publication Analysis

Top Keywords

exon skipping
48
skipping group
16
exon
12
skipping
12
skipping losartan
12
mdx mice
12
losartan exon
12
losartan
11
effects exon
8
losartan skeletal
8

Similar Publications

Introduction: Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disorder classically associated with multiple basal cell carcinomas, odontogenic keratocysts and skeletal anomalies. However, its significant phenotypic heterogeneity often delays the diagnosis. Here, we undertake the first comprehensive characterisation of NBCCS and congenital urinary tract anomalies.

View Article and Find Full Text PDF

Background & objectives Alkaptonuria (AKU) is an autosomal recessive disease wherein biallelic pathogenic variants in the homogentisate 1,2- dioxygenase (HGD) gene encoding the enzyme homogentisate 1,2 dioxygenase cause high levels of homogentisic acid (HGA) to circulate within the body leading to its deposition in connective tissues and excretion in urine. A homozygous splice donor variant (c.87+1G>A) has been identified to be the founder variant causing alkaptonuria among Narikuravars, a group of gypsies settled in Tamil Nadu.

View Article and Find Full Text PDF

Analysis of outcomes in resected early-stage NSCLC with rare targetable driver mutations.

Ther Adv Med Oncol

December 2024

Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), 700 University Avenue, 7-812, Toronto, ON M5G 2M9, Canada.

Background: Given advancements in adjuvant treatments for non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK)-targeted therapies, it is important to consider postoperative targeted therapies for other early-stage oncogene-addicted NSCLC. Exploring baseline outcomes for early-stage NSCLC with these rare mutations is crucial.

Objectives: This study aims to assess relapse-free survival (RFS) and overall survival (OS) in patients with resected early-stage NSCLC with rare targetable driver mutations.

View Article and Find Full Text PDF

To investigate the pathogenic variants and function of a pedigree with syndromic hearing loss using high-throughput sequencing. Detailed medical history and pedigree history were inquired, and a pedigree chart was drawn. Hearing examinations were performed on this pedigree, and whole-exome sequencing and bioinformatics analysis were performed to screen for suspected pathogenic variants.

View Article and Find Full Text PDF

Alternative Splicing Landscape in Mouse Skeletal Muscle and Adipose Tissue: Effects of Intermittent Fasting and Exercise.

J Nutr Biochem

December 2024

Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany. Electronic address:

Alternative splicing contributes to diversify the cellular protein landscape, but aberrant splicing is implicated in many diseases. To which extent mis-splicing contributes to insulin resistance as the causal defect of type 2 diabetes and whether this can be reversed by lifestyle interventions is largely unknown. Therefore, RNA sequencing data from skeletal muscle and adipose tissue of diabetes-susceptible NZO mice treated with or without intermittent fasting and of healthy C57BL/6J mice subjected to exercise were analyzed for alternative splicing differences using Whippet and rMATS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!