Background: The availability of diverse second- and third-generation sequencing technologies enables the rapid determination of the sequences of bacterial genomes. However, identifying the sequencing technology most suitable for producing a finished genome with multiple chromosomes remains a challenge. We evaluated the abilities of the following three second-generation sequencers: Roche 454 GS Junior (GS Jr), Life Technologies Ion PGM (Ion PGM), and Illumina MiSeq (MiSeq) and a third-generation sequencer, the Pacific Biosciences RS sequencer (PacBio), by sequencing and assembling the genome of Vibrio parahaemolyticus, which consists of a 5-Mb genome comprising two circular chromosomes.
Results: We sequenced the genome of V. parahaemolyticus with GS Jr, Ion PGM, MiSeq, and PacBio and performed de novo assembly with several genome assemblers. Although GS Jr generated the longest mean read length of 418 bp among the second-generation sequencers, the maximum contig length of the best assembly from GS Jr was 165 kbp, and the number of contigs was 309. Single runs of Ion PGM and MiSeq produced data of considerably greater sequencing coverage, 279× and 1,927×, respectively. The optimized result for Ion PGM contained 61 contigs assembled from reads of 77× coverage, and the longest contig was 895 kbp in size. Those for MiSeq were 34 contigs, 58× coverage, and 733 kbp, respectively. These results suggest that higher coverage depth is unnecessary for a better assembly result. We observed that multiple rRNA coding regions were fragmented in the assemblies from the second-generation sequencers, whereas PacBio generated two exceptionally long contigs of 3,288,561 and 1,875,537 bps, each of which was from a single chromosome, with 73× coverage and mean read length 3,119 bp, allowing us to determine the absolute positions of all rRNA operons.
Conclusions: PacBio outperformed the other sequencers in terms of the length of contigs and reconstructed the greatest portion of the genome, achieving a genome assembly of "finished grade" because of its long reads. It showed the potential to assemble more complex genomes with multiple chromosomes containing more repetitive sequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159541 | PMC |
http://dx.doi.org/10.1186/1471-2164-15-699 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Council for Geoscience, Private Bag X112, Pretoria, 0001, South Africa.
One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.
View Article and Find Full Text PDFJ Infect Public Health
February 2025
Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
Background: Bacterial vaginosis (BV) is a significant global public health issue due to its high recurrence rate and association with various adverse health effects. Understanding the composition and dynamics of the vaginal microbiota (VMB) is essential for better understanding of vaginal health and for developing effective strategies to improve BV management. The study aimed to determine the composition and diversity of the VMB in Thai women with BV before and after metronidazole (MTZ) treatment, and in healthy women.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Laboratório de Biologia Molecular (LBM), Centro de Bionegócios da Amazônia (CBA), Manaus, Amazonas, Brazil.
Background: Native to the Amazon region, Copaifera multijuga Hayne is a large tree (≈ 36 m in height) that is heavily exploited for extraction of its oleoresin. Many studies have addressed the phytochemical properties and applications of this raw material; however, there are few initiatives that have focused on the genetic characterization of native populations of this species. To this end, our objective was to develop microsatellite markers for C.
View Article and Find Full Text PDFMetabolites
November 2024
Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France.
Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions.
View Article and Find Full Text PDFTransfusion
December 2024
School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK.
Background: The Rh blood group system (ISBT004) is encoded by two homologous genes, RHD and RHCE. Polymorphism in these two genes gives rise to 56 antigens, which are highly immunogenic and clinically significant. This study extended previous work on the establishment of RHD allele specific reference sequences using next generation sequencing (NGS) with the Ion Personal Genome Machine (Ion PGM) to sequence the complete RHCE gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!