Establishment and characterization of a lethal mouse model for the Angola strain of Marburg virus.

J Virol

Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA

Published: November 2014

AI Article Synopsis

  • Researchers have developed a new mouse model to study the pathogenesis of the highly virulent Angola strain of Marburg virus (MARV), which could aid in the development of vaccines and treatments.
  • While previous efforts focused mainly on Ebola virus, the advancement of protective measures against MARV has been slower due to the lack of suitable animal models.
  • The adapted virus (MARV/Ang-MA) showed severe disease outcomes in SCID mice, mimicking the symptoms of Marburg hemorrhagic fever seen in nonhuman primates, thus providing valuable insights for future research.

Article Abstract

Unlabelled: Infections with Marburg virus (MARV) and Ebola virus (EBOV) cause severe hemorrhagic fever in humans and nonhuman primates (NHPs) with fatality rates up to 90%. A number of experimental vaccine and treatment platforms have previously been shown to be protective against EBOV infection. However, the rate of development for prophylactics and therapeutics against MARV has been lower in comparison, possibly because a small-animal model is not widely available. Here we report the development of a mouse model for studying the pathogenesis of MARV Angola (MARV/Ang), the most virulent strain of MARV. Infection with the wild-type virus does not cause disease in mice, but the adapted virus (MARV/Ang-MA) recovered from liver homogenates after 24 serial passages in severe combined immunodeficient (SCID) mice caused severe disease when administered intranasally (i.n.) or intraperitoneally (i.p.). The median lethal dose (LD50) was determined to be 0.015 50% TCID50 (tissue culture infective dose) of MARV/Ang-MA in SCID mice, and i.p. infection at a dose of 1,000× LD50 resulted in death between 6 and 8 days postinfection in SCID mice. Similar results were obtained with immunocompetent BALB/c and C57BL/6 mice challenged i.p. with 2,000× LD50 of MARV/Ang-MA. Virological and pathological analyses of MARV/Ang-MA-infected BALB/c mice revealed that the associated pathology was reminiscent of observations made in NHPs with MARV/Ang. MARV/Ang-MA-infected mice showed most of the clinical hallmarks observed with Marburg hemorrhagic fever, including lymphopenia, thrombocytopenia, marked liver damage, and uncontrolled viremia. Virus titers reached 10(8) TCID50/ml in the blood and between 10(6) and 10(10) TCID50/g tissue in the intestines, kidney, lungs, brain, spleen, and liver. This model provides an important tool to screen candidate vaccines and therapeutics against MARV infections.

Importance: The Angola strain of Marburg virus (MARV/Ang) was responsible for the largest outbreak ever documented for Marburg viruses. With a 90% fatality rate, it is similar to Ebola virus, which makes it one of the most lethal viruses known to humans. There are currently no approved interventions for Marburg virus, in part because a small-animal model that is vulnerable to MARV/Ang infection is not available to screen and test potential vaccines and therapeutics in a quick and economical manner. To address this need, we have adapted MARV/Ang so that it causes illness in mice resulting in death. The signs of disease in these mice are reminiscent of wild-type MARV/Ang infections in humans and nonhuman primates. We believe that this will be of help in accelerating the development of life-saving measures against Marburg virus infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248893PMC
http://dx.doi.org/10.1128/JVI.01643-14DOI Listing

Publication Analysis

Top Keywords

marburg virus
20
scid mice
12
virus
10
mice
9
mouse model
8
angola strain
8
strain marburg
8
ebola virus
8
hemorrhagic fever
8
humans nonhuman
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!