Background: Pathophysiological processes underlying diabetic-related cardiomyopathies are complex. Mitochondria dysfunction is often described as a cause of cardiac impairment but its extent may depend on the type of experimental diabetes. Here we proposed to compare drug- or diet-induced models of diabetes in terms of metabolic features, cardiac and mitochondrial functions.
Methods: Mice were fed with regular chow or fat-enriched diet. After three weeks, they received either citrate or streptozotocin injections for five consecutive days. Metabolic parameters, myocardial contractile function and mitochondrial respiration were measured after three more weeks. Fat mass volumes were assessed by magnetic resonance imaging. Oral glucose tolerance test, insulin tolerance test, triglyceride and adipocytokine quantification were evaluated to establish metabolic profiles. Cardiac function was assessed ex vivo onto a Langendorff column. Isolated cardiac mitochondria respiration was obtained using high-resolution oxygraphy.
Results: Mice fed with the fat-enriched regimen presented abdominal obesity, increased blood glucose, elevated leptin level, glucose intolerance, and insulin resistance. Mice treated with streptozotocin, independently of the regimen, lost their capacity to release insulin in response to glucose ingestion. Mice fed with regular chow diet and injected with streptozotocin developed cardiac dysfunction without mitochondrial respiration defect. However, both groups of high-fat diet fed mice developed cardiac alterations associated with reduction in mitochondrial oxygen consumption, despite an increase in mitochondrial biogenesis signalling.
Conclusions: We explored three animal models mimicking type 1 and 2 diabetes. While cardiac dysfunction was present in the three groups of mice, mitochondrial respiration impairment was only obvious in models reproducing features of type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243842 | PMC |
http://dx.doi.org/10.1186/s12933-014-0118-7 | DOI Listing |
Cell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil.
The cover crop (L.) R.Br.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.
The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells.
View Article and Find Full Text PDFMolecules
January 2025
Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea.
The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondria, Oxidative Stress and Muscle Plasticity", Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France.
Peripheral blood mononuclear cells' (PBMCs) mitochondrial respiration is impaired and likely involved in myocardial injury and heart failure pathophysiology, but its response to acute and severe hypoxia, often associated with such diseases, is largely unknown in humans. We therefore determined the effects of acute hypoxia on PBMC mitochondrial respiration and ROS production in healthy volunteers exposed to controlled oxygen reduction, achieving an inspired oxygen fraction of 10.5%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!