A combined chemical pressure and substrate biaxial pressure crystal engineering approach was demonstrated for producing highly epitaxial Sm-doped BiMnO(3) (BSMO) films on SrTiO(3) single crystal substrates, with enhanced magnetic transition temperatures, TC up to as high as 140 K, 40 K higher than that for standard BiMnO(3) (BMO) films. Strong room temperature ferroelectricity with piezoresponse amplitude, d(33) = 10 pm/V, and long-term retention of polarization were also observed. Furthermore, the BSMO films were much easier to grow than pure BMO films, with excellent phase purity over a wide growth window. The work represents a very effective way to independently control strain in-plane and out-of-plane, which is important not just for BMO but for controlling the properties of many other strongly correlated oxides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176521 | PMC |
http://dx.doi.org/10.1021/am501351c | DOI Listing |
Sci Rep
March 2017
Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
BiMnO is a promising multiferroic material but it's ferromagnetic T is well below room temperature and the magnetic phase diagram is unknown. In this work, the relationship between magnetic transition temperature (T) and the substrate induced (pseudo-) tetragonal distortion (ratio of out-of-plane to in-plane lattice parameters, c/a) in BiMnO thin films, lightly doped to optimize lattice dimensions, was determined. For c/a > 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2014
Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, U.K.
A combined chemical pressure and substrate biaxial pressure crystal engineering approach was demonstrated for producing highly epitaxial Sm-doped BiMnO(3) (BSMO) films on SrTiO(3) single crystal substrates, with enhanced magnetic transition temperatures, TC up to as high as 140 K, 40 K higher than that for standard BiMnO(3) (BMO) films. Strong room temperature ferroelectricity with piezoresponse amplitude, d(33) = 10 pm/V, and long-term retention of polarization were also observed. Furthermore, the BSMO films were much easier to grow than pure BMO films, with excellent phase purity over a wide growth window.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!