Background: Bacterial skin infections are common in dogs and humans. Keratinocytes have phenotypic features of nonprofessional antigen-presenting cells and express various cytokines. However, little is known about the effects of antibiotics on inflammatory markers in canine keratinocytes.
Hypothesis/objectives: To investigate inflammatory markers in canine progenitor epidermal keratinocytes (CPEKs) and to determine the effects of selected antibiotics on these markers.
Methods: The CPEKs were exposed for 2-24 h to three concentrations of amoxicillin, cefalexin, sulfadimethoxine, sulfamethoxazole (or its nitroso metabolite), amikacin or enrofloxacin. Enzyme-linked immunosorbent assay (ELISA) and immunocytochemistry were used to detect major histocompatibility complex (MHC) II. CD40 and CXCR1 [interleukin (IL)-8 receptor] were detected using ELISA. Secreted cytokines/chemokines were quantified using a multiplex kit.
Results: No MHC II protein was detected. CD40 protein was found at 24 h, with levels being significantly increased by enrofloxacin. The CPEKs secreted no detectable monocyte chemotactic protein-1; undetectable to low (picogram per millilitre range) concentrations of IL-6, IL-7, IL-10, IL-15, tumour necrosis factor-α, interferon-γ and granulocyte-macrophage colony-stimulating factor; and high (nanogram per millilitre range) concentrations of IL-8. Levels of IL-8 increased over 24 h following cell proliferation. They were significantly increased by enrofloxacin after 8 h, and by cefalexin, sulfadimethoxine, sulfamethoxazole, its nitroso metabolite and enrofloxacin after 24 h. The CPEKs expressed CXCR1.
Conclusions And Clinical Importance: Canine progenitor epidermal keratinocytes express various inflammatory proteins, with expression profiles being affected by certain antibiotics. This supports previous work showing keratinocytes to be mediators of inflammation and demonstrates the potential pro-inflammatory effects of certain antibiotics in the skin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/vde.12164 | DOI Listing |
Theranostics
January 2025
Department of biochemistry and molecular biology, College of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
Stem cell transplantation is a promising strategy to establish neural relays in situ for spinal cord injury (SCI) repair. Recent research has reported short-term survival of exogenous cells, irrespective of immunosuppressive drugs (ISD), results in similar function recovery, though the mechanisms remain unclear. This study aims to validate this short-term repair effect and the potential mechanisms in large animals.
View Article and Find Full Text PDFJ Vet Med Sci
January 2025
Faculty of Veterinary Medicine, Okayama University of Science.
In recent years, the importance of using local disinfectants instead of systemic antibiotics for the treatment of infectious skin diseases to prevent the emergence of resistant bacteria has become widely recognized. Chlorhexidine gluconate (CHG) is commonly used in veterinary antibacterial shampoos; however, the daily topical application of diluted CHG solutions has also been adopted. Despite its widespread use, few studies have investigated the effects of CHG on the canine skin barrier.
View Article and Find Full Text PDFRegen Ther
June 2024
Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan.
Introduction: Exploring techniques for differentiating and culturing canine hepatocytes serves as a means to establish systems for liver transplantation and drug metabolism testing. However, establishing consistent methods for culturing stable hepatocytes remains a challenge. Recently, several investigations have shown the reprogramming of mature hepatocytes into hepatic progenitor cells by applying specific small molecule compounds, including Y-27632, (a ROCK inhibitor), A-83-01 (a TGFβ inhibitor), and CHIR99021 (a GSK3 inhibitor) (termed YAC) in rat, mouse, and humans, respectively.
View Article and Find Full Text PDFFront Vet Sci
October 2024
Expertise Centre of Genetics, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.
J Funct Biomater
October 2024
Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil.
Bone defects in animals can arise from various causes, including diseases, neoplasms, and most commonly, trauma. Comminuted fractures that exceed the critical size may heal poorly due to deficient or interrupted vascularization, resulting in an insufficient number of progenitor cells necessary for bone regeneration. In this context, 3D printing techniques using poly-L-lactic acid/graphene oxide (PLLA/GO) aim to address this issue by creating customized scaffolds combined with canine placenta hydrogel and mesenchymal stem cells for use in goat mandibles, compared to a control group using titanium plate fixation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!