Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice.

Biochem Biophys Res Commun

Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA. Electronic address:

Published: September 2014

Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor(flox/flox) mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382310PMC
http://dx.doi.org/10.1016/j.bbrc.2014.08.046DOI Listing

Publication Analysis

Top Keywords

cardiac muscle
24
mtor-mko mice
12
mammalian target
8
target rapamycin
8
essential cardiomyocyte
8
cardiomyocyte survival
8
function mtor
8
perinatal development
8
postnatal growth
8
level cardiac
8

Similar Publications

Recent evidence suggests that ketone bodies have therapeutic potential in many cardiovascular diseases including heart failure (HF). Accordingly, this has led to multiple clinical trials that use ketone esters to treat HF patients, which we term ketone therapy. Ketone esters, specifically ketone monoesters, are synthetic compounds which, when consumed, are de-esterified into two β-hydroxybutyrate (βOHB) molecules and increase the circulating βOHB concentration.

View Article and Find Full Text PDF

Obesity, along with hypoxia, is known to be a risk factor for pulmonary hypertension (PH), which can lead to right ventricular hypertrophy and eventually heart failure. Both obesity and PH influence the autonomic nervous system (ANS), potentially aggravating changes in the right ventricle (RV). This study investigates the combined effects of obesity and hypoxia on the autonomic innervation of the RV in a mouse model.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.

View Article and Find Full Text PDF

Purpose: Cardiomyocyte death is a major cytopathologic response in acute myocardial infarction (AMI) and involves complex inflammatory interactions. Although existing reports indicating that mixed lineage kinase domain-like protein (MLKL) is involved in macrophage necroptosis and inflammasome activation, the downstream mechanism of MLKL in necroptosis remain poorly characterized in AMI.

Methods: MLKL knockout mice (MLKL), RIPK3 knockout mice (RIPK3), and macrophage-specific MLKL conditional knockout mice (MLKL) were established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!