The growth hormone response to a single intravenous dose of human growth hormone-releasing hormone (GHRH) was examined in 23 healthy neonates (12 term and 11 preterm) aged 2-4 days. There were no significant increases in growth hormone concentrations at any point in time studied following GHRH administration in either group of newborns. The mean basal growth hormone levels of term neonates were significantly higher than those of the premature newborns (39.6 +/- 5.3 vs. 23.2 +/- 3.3 ng/ml; p less than 0.01) and this difference in growth hormone remained significant 15 and 30 min after GHRH injection. Gestational age correlated positively with both basal and peak growth hormone concentrations in our patients. In conclusion, first, neonates studied in their first days of life have high basal levels of growth hormone and fail to further secrete any significant amount of growth hormone following a single dose of GHRH, and, second, premature newborns secrete significantly less growth hormone than do term neonates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000243131 | DOI Listing |
Arch Insect Biochem Physiol
January 2025
State Key Laboratory of Agricultural and Forestry Biosecurity, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
The activin cascade is activated when a pair of extracellular ligand (Myoglianin, Myo; Activin β, Actβ; Dawdle, Daw) binds to two pairs of transforming growth factor β (TGF) serine-threonine receptor kinases, TGF-β type I (Baboon, Babo) and II receptors. However, the roles of activin way have not well been explored in non-Drosophilid insects. In the present paper, we compared the functions of Activin β (Actβ) ligand and receptor isoform BaboB in post-embryonic development in a defoliating ladybird Henosepilachna vigintioctopunctata.
View Article and Find Full Text PDFAndrology
January 2025
Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK.
The hypothalamic-pituitary-gonadal axis is regulated by the gonadotropin-releasing hormone pulse generator in the hypothalamus. This is comprised of neurons that secrete kisspeptin in a pulsatile manner to stimulate the release of GnRH, and, in turn, downstream gonadotropins from the pituitary gland, and subsequently sex steroids and gametogenesis from the gonads. Many reproductive disorders in both males and females are characterized by hypothalamic dysfunction, including functional disorders (such as age-related hypogonadism, obesity-related secondary hypogonadism, hyperprolactinemia, functional hypothalamic amenorrhea and polycystic ovary syndrome), structural pathologies (such as craniopharyngiomas or radiation or surgery-related hypothalamic dysfunction), and pubertal disorders (constitutional delay of growth and puberty and congenital hypogonadotropic hypogonadism).
View Article and Find Full Text PDFRev Neurosci
January 2025
School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China.
Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland.
Background: Loeys-Dietz syndrome (LDS) is a clinically and genetically heterogeneous, autosomal dominant aortic aneurysm syndrome with widespread systemic involvement. We present the case of a 16.5-year-old girl with LDS type 2 (LDS2) caused by a heterozygous pathogenic variant, c.
View Article and Find Full Text PDFUnlabelled: Growth hormone (GH) plays a crucial role in various physiological functions, with its secretion tightly regulated by complex endocrine mechanisms. Pathological conditions such as acromegaly or pituitary tumors result in elevated circulating GH levels, which have been implicated in a spectrum of metabolic disorders, potentially by regulating liver metabolism. In this study, we focused on the liver, a key organ in metabolic regulation and a primary target of GH, to investigate the impact of high circulating GH on liver metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!