Objectives: We previously demonstrated that a mild pre-natal/early post-natal iron-deficient anaemic (IDA) diet devoid of long-chain polyunsaturated fatty acids (LC-PUFA) affected development, neurophysiology, and cerebral lipid biochemistry of the guinea pigs' progeny. Impacts of dietary LC-PUFA on altered cerebral development resulting from pre-natal IDA are unknown. To address this health issue, impacts of mild gestational IDA in the presence of dietary LC-PUFA on the offsprings' neural maturation were studied in guinea pigs using auditory brainstem responses (ABRs) and assessments of brain fatty acids (FAs).

Methods: Female guinea pigs (n = 10/group) were fed an iron sufficient (IS) or IDA diet (146 and 12.7 mg iron/kg, respectively) with physiological amounts of LC-PUFA, during the gestation and lactation periods. From post-natal day (PNd) 9 onwards, the IS + PUFA diet was given to both groups of weaned offspring. Cerebral tissue and offsprings' ABR were collected on PNd24.

Results: There was no difference in peripheral and brainstem transmission times (BTTs) between IS + PUFA and IDA + PUFA siblings (n = 10/group); the neural synchrony was also similar in both groups. Despite the absence of differences in auditory thresholds, IDA + PUFA siblings demonstrated a sensorineural hearing loss in the extreme range of frequencies (32, 4, and 2 kHz), as well as modified brain FA profiles compared to the IS + PUFA siblings.

Discussion: The present study reveals that siblings born from dams exposed to a moderate IDA diet including balanced physiological LC-PUFA levels during pregnancy and lactation demonstrate minor impairments of ABR compared to the control siblings, particularly on the auditory acuity, but not on neural synchrony, auditory nerve velocity and BTT.

Download full-text PDF

Source
http://dx.doi.org/10.1179/1476830514Y.0000000140DOI Listing

Publication Analysis

Top Keywords

dietary lc-pufa
12
guinea pigs
12
ida diet
12
iron-deficient anaemic
8
auditory brainstem
8
brainstem responses
8
fatty acids
8
ida + pufa siblings
8
neural synchrony
8
auditory
5

Similar Publications

Evaluation of cottonseed oil as a substitute for fish oil in the commercial diet for juvenile swimming crabs ().

Anim Nutr

December 2024

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.

A six-week feeding trial was carried out to determine the feasibility of cottonseed oil (CSO) as a viable substitute for fish oil (FO) in the commercial diet of swimming crabs. Ninety healthy swimming crabs (initial body weight 34.28 ± 0.

View Article and Find Full Text PDF

Long-chain polyunsaturated fatty acids (LC-PUFA) like arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3) constitute one-third to half of fish sperm lipids. Fish sperm is rich in phospholipid (PL)-primarily phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin. DHA is generally the most abundant LC-PUFA in each PL class, followed by competition between ARA and EPA.

View Article and Find Full Text PDF

Cholesterol Modifies Nutritional Values and Flavor Qualities in Female Swimming Crab ().

Aquac Nutr

March 2024

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.

The quality of crustacean aquatic products is affected by feed. Cholesterol (CHO), an essential element for crustacean growth, has been widely supplemented in diet, but its food quality regulation remains unclear. The study aimed to investigate the effects of different dietary CHO levels (0.

View Article and Find Full Text PDF

The bioaccessibility and bioavailability of dietary fatty acids depend on the lipid to which they are esterified, the organisation of theses lipids in water and their recognition by lipolytic enzymes. In this work, we studied the release of marine long-chain polyunsaturated fatty acids (LC-PUFA), depending on their presentation either in the form of phospholipids (PL) or triacylglycerol (TAG). Two formulations based on marine PL or TAG extracted from salmon heads () were prepared.

View Article and Find Full Text PDF

Identification and Functional Characterization of the FATP1 Gene from Mud Crab, .

Animals (Basel)

October 2024

Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China.

In mammals, fatty acid transport protein 1 (FATP1) plays important roles in cellular uptake and activation of long-chain fatty acid (LCFA), especially in processes of transportation, oxidation and triacylglycerol synthesis. However, the role of FATP1 in invertebrates, especially decapod crustaceans, is still poorly understood. In this study, the cDNA of a FATP1 gene from a decapod crustacean, mud crab , was cloned and functionally characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!