Hybrid quantum mechanics/molecular mechanics calculations were used to study the catalytic mechanism of the retaining human α-(1,3)-galactosyltransferase (GTBWT) and its E303C mutant (GTBE303C). Both backside (via covalent glycosyl-enzyme intermediate, CGEI) and frontside SNi-like mechanisms (via oxocarbenium-ion intermediate, OCII) were investigated. The calculations suggest that both mechanisms are feasible in the enzymatic catalysis. The nucleophilic attack of the acceptor substrate to the anomeric carbon of OCII is the rate-determining step with an overall reaction barrier (ΔE(‡) = 19.5 kcal mol(-1)) in agreement with an experimental rate constant (kcat = 5.1 s(-1)). A calculated α-secondary kinetic isotope effect (α-KIE) of 1.27 (GTBWT) and 1.26 (GTBE303C) predicts dissociative character of the transition state in agreement with experimentally measured α-KIE of other retaining glycosyltransferases. Remarkably, stable CGEI in GTBE303C compared with its counterpart in GTBWT may explain why the CGEI has been detected by mass spectrometry only in GTBE303C ( Soya N, Fang Y, Palcic MM, Klassen JS. 2011. Trapping and characterization of covalent intermediates of mutant retaining glycosyltransferases. Glycobiology, 21: 547-552).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/glycob/cwu085 | DOI Listing |
JACS Au
December 2024
Institute of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany.
The chemical industry can now seize the opportunity to improve the sustainability of its processes by replacing fossil carbon sources with renewable alternatives such as CO, biomass, and plastics, thereby thinking ahead and having a look into the future. For their conversion to intermediate and final products, different types of catalysts-microbial, enzymatic, and organometallic-can be applied. The first part of this review shows how these catalysts can work separately in parallel, each route with unique requirements and advantages.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFGels
December 2024
Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece.
Spent coffee grounds, the main by-product of the coffee-brewing process, were valorized as a renewable source of lipids for the synthesis of novel wax esters and as an alternative and sustainable oil-structuring agent for the production of oleogels. The lipase-catalyzed reactions were implemented using fatty alcohols both under solvent-free conditions and with limonene as an environmentally friendly solvent. Wax esters were evaluated for their ability to formulate olive oil oleogels through the determination of the physical properties of oleogels.
View Article and Find Full Text PDFBioTech (Basel)
December 2024
State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia.
Heterologous protein expression often faces significant challenges, particularly when the target protein has posttranslational modifications, is toxic, or is prone to misfolding. These issues can result in low expression levels, aggregation, or even cell death. Such problems are exemplified by the expression of phospholipase p37, a critical target for chemotherapeutic drugs against pathogenic human orthopoxviruses, including monkeypox and smallpox viruses.
View Article and Find Full Text PDFACS Catal
December 2024
Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.
The 3-chymotrypsin-like protease (3CL-PR; also known as Main protease) of SARS-CoV-2 is a cysteine protease that is the target of the COVID-19 drug, Paxlovid. Here, we report for 3CL-PR, the pH-rate profiles of a substrate, an inhibitor, affinity agents, and solvent kinetic isotope effects (sKIEs) obtained under both steady-state and pre-steady-state conditions. "Bell-shaped" plots of log( / ) vs pH for the substrate (Abz)SAVLQ*SGFRK(Dnp)-NH and p vs pH for a peptide aldehyde inhibitor demonstrated that essential acidic and basic groups of p = 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!