Background: Inhibition of TNFα protects the retina against diabetic-like changes in rodent models. The mechanism by which TNFα induces deleterious retinal changes is not known. Previously, we have shown that TNFα can inhibit normal insulin signal transduction, leading to increased apoptosis in both retinal endothelial cells (REC) and Müller cells. Additionally, β2-adrenergic receptor knockout mice (β2KO) have increased TNFα levels and decreased insulin receptor activity. In this study, we hypothesized that inhibition of TNFα in β2KO mice would increase normal insulin signaling, leading to improved retinal function.

Methods: C57BL6 or β2KO mice were left untreated or treated with etanercept (0.3 mg/kg subcutaneously, 3× a week) for 2 months. Electroretinogram analyses were done before treatment was initiated and after two months of treatment with etanercept on all mice. Western blot or ELISA analyses were done on whole retinal lysates from all four groups of mice for TNFα, suppressor of cytokine signaling 3 (SOCS3), insulin receptor, and apoptotic proteins.

Results: Etanercept significantly reduced TNFα levels in β2KO mice, leading to increased insulin receptor phosphorylation on tyrosine 1150/1151. SOCS3 levels were increased in β2KO mice, which were reduced after etanercept treatment. Pro-apoptotic proteins were reduced in etanercept-treated β2KO mice. Etanercept improved ERG amplitudes in β2KO mice.

Conclusions: Inhibition of TNFα by etanercept protects the retina likely through reduced TNFα-mediated insulin resistance, leading to reduced apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149274PMC
http://dx.doi.org/10.1186/s12974-014-0137-zDOI Listing

Publication Analysis

Top Keywords

β2ko mice
20
normal insulin
12
inhibition tnfα
12
insulin receptor
12
mice
9
insulin signal
8
signal transduction
8
β2-adrenergic receptor
8
receptor knockout
8
knockout mice
8

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!