Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Delay-coupled optoelectronic systems form promising candidates to act as powerful information processing devices. In this brief, we consider such a system that has been studied before in the context of reservoir computing (RC). Instead of viewing the system as a random dynamical system, we see it as a true machine-learning model, which can be fully optimized. We use a recently introduced extension of backpropagation through time, an optimization algorithm originally designed for recurrent neural networks, and use it to let the network perform a difficult phoneme recognition task. We show that full optimization of all system parameters of delay-coupled optoelectronics systems yields a significant improvement over the previously applied RC approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2014.2344002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!