A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118021 | PMC |
http://dx.doi.org/10.3389/fncel.2014.00195 | DOI Listing |
Noncovalent carbon bonding (C-bonding), a recently explored σ-hole interaction, has primarily been characterized through X-ray structural and computational studies. Evidence of C-bonds in solution is scarce, especially in highly polar solvents like DMSO where solvation effects typically overshadow weak non-covalent interactions. In this work, we present three novel spiroisatin-based -acyl hydrazones (1-3) in which C-bonds play a critical role in stabilizing the conformation in solution.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
The catalytic competency of the ribosome in extant protein biosynthesis is thought to arise primarily from two sources: an ability to precisely juxtapose the termini of two key substrates─3'-aminoacyl and -acyl-aminoacyl tRNAs─and an ability to ease direct transpeptidation by their desolvation and encapsulation. In the absence of ribosomal, or enzymatic, protection, however, these activated alkyl esters undergo efficient hydrolysis, while significant entropic barriers serve to hamper their intermolecular cross-aminolysis in bulk water. Given that the spontaneous emergence of a catalyst of comparable size and sophistication to the ribosome in a prebiotic RNA world would appear implausible, it is thus natural to ask how appreciable peptide formation could have occurred with such substrates in bulk water without the aid of advanced ribozymatic catalysis.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
ConspectusSelective chemical modification of endogenous proteins in living systems with synthetic small molecular probes is a central challenge in chemical biology. Such modification has a variety of applications important for biological and pharmaceutical research, including protein visualization, protein functionalization, proteome-wide profiling of enzyme activity, and irreversible inhibition of protein activity. Traditional chemistry for selective protein modification in cells largely relies on the high nucleophilicity of cysteine residues to ensure target-selectivity and site-specificity of modification.
View Article and Find Full Text PDFBackground: Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia/hypercapnia (IHC), affects predominantly obese individuals, and increases atherosclerosis risk. Since we and others have implicated gut microbiota and metabolites in atherogenesis, we dissected their contributions to OSA-induced atherosclerosis.
Results: Atherosclerotic lesions were compared between conventionally-reared specific pathogen free (SPF) and germ-free (GF) mice following a high fat high cholesterol diet (HFHC), with and without IHC conditions.
Environ Pollut
January 2025
Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!