A rare 3D tetranuclear {In4(μ2-OH)3} building block based MOF {[In4/3(μ2-OH)(2,6-pydc)(1,4-bda)0.5(H2O)]·2H2O}n (2) was obtained through a crystal transformation from a dimeric complex In3(2,6-pydc)3(1,4-bda)1.5(H2O)6 (1). With a 2D + 3D → 3D compact structure, 2 retains crystallinity in boiling water and organic solvents, exhibiting exceptional fluorescence quenching behaviour for the DMSO molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4dt02045f | DOI Listing |
ACS Appl Electron Mater
December 2024
Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria.
Germanium (Ge), the next-in-line group-IV material, bears great potential to add functionality and performance to next-generation nanoelectronics and solid-state quantum transport based on silicon (Si) technology. Here, we investigate the direct epitaxial growth of two-dimensional high-quality crystalline Ge layers on Si deposited at ultralow growth temperatures ( = 100-350 °C) and pristine growth pressures (≲10 mbar). First, we show that a decreasing does not degrade the crystal quality of homoepitaxial Ge/Ge(001) by comparing the point defect density using positron annihilation lifetime spectroscopy.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095, United States.
Electron microscopy in its various forms is one of the most powerful imaging and structural elucidation methods in nanotechnology where sample information is generally limited by random chemical and structural damage. Here we show how a well-selected chemical probe can be used to transform indiscriminate chemical damage into clean chemical processes that can be used to characterize some aspects of the interactions between high-energy electron beams and soft organic matter. Crystals of a Dewar benzene exposed to a 300 keV electron beam facilitate a clean valence-bond isomerization radical-cation chain reaction where the number of chemical events per incident electron is amplified by a factor of up to ca.
View Article and Find Full Text PDFChem Mater
December 2024
Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States.
Electrochemically-formed disordered rock salt compounds are an emerging class of Li-ion electrode materials for fast-charging energy storage. However, the specific factors that govern the formation process and the resulting charge storage performance are not well understood. Here, we characterize the transformation mechanism and charge storage properties of an electrochemically-formed disordered rock salt from VMoO (VMO).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India. Electronic address:
This study presents an eco-friendly, cost-effective approach for synthesizing highly efficient nanocatalysts with the help of organic waste. Iron nanoparticles (INPs) were synthesized from aqueous extracts of potato, potato peel, and potato leaf and were evaluated for their photocatalytic efficiency for the degradation of methylene blue dye. X-ray Diffraction (XRD) confirmed FeO nanoparticles cubic crystal structure with the smallest crystallite size (9.
View Article and Find Full Text PDFJ Struct Biol
December 2024
Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Armilla 18100, Granada, Spain. Electronic address:
The nacre formation process is a fascinating phenomenon involving mineral phase transformations, self-assembly processes, and protein-mineral interactions, resulting in a hierarchical structure that exhibits outstanding mechanical properties. However, this process is only partially known, and many aspects of nacre structure are not well understood, especially at the molecular scale. To understand the interplay between components-aragonite, protein and chitin-of the structure of nacre observed experimentally, we investigate the interactions of a peptide that is part of the protein lustrin A, identified in the nacreous layer of the shell of the abalone Haliotis rufescens, with the (001) crystal surface of aragonite and the chitin molecule.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!