An urgent need exists to develop a more sophisticated screening system in order to improve diagnostic accuracy of clinically significant cancer and also to reduce the drawbacks of prostate-specific antigen (PSA) screening including overdetection and overtreatment. The most promising next-generation PSA test, which can improve the management of prostate cancer, may be proenzyme PSA (proPSA) or precursor PSA (pPSA). proPSA has pro-leader peptide sequences of seven or less amino acids and previous studies demonstrated that [-2]proPSA, which contains only a 2-amino-acid propeptide leader, could be more useful not only to distinguish between men with and without cancer, but also between tumors with aggressive features with performance exceeding other classical PSA-related indices including ratio of free PSA to total PSA (%f-PSA) and PSA density. Recently, it was demonstrated that baseline [-2]proPSA-related indices were independent factors to predict pathological reclassification at one year or several years after entering active surveillance. Furthermore, a retrospective study suggested that [-2]proPSA might be a useful predictive marker for future developing clinically manifested prostate cancer as well as aggressive tumors. ProPSA-related indices may have the potential for developing a more ideal risk classification for men at risk for prostate cancer, with a screening system maintaining the sensitivity of detecting clinically significant prostate cancer while saving cost, individualized treatment strategies, and follow-up procedures of active surveillance or active treatments. At a minimum, proPSA will be one of the most important new markers on the prostate cancer management in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10147-014-0742-y | DOI Listing |
Dokl Biochem Biophys
January 2025
National Research University Higher School of Economics, Moscow, Russia.
Ferroptosis is an iron-dependent form of programmed cell death (PCD) associated with lipid membrane peroxidation. It has gained attention in cancer research because some tumor cells that are resistant to other forms of PCD are sensitive to ferroptosis. Despite the significant amount of research on ferroptosis, the list of known inducers remains limited, creating opportunities to discover new compounds with clinical potential.
View Article and Find Full Text PDFEJNMMI Phys
January 2025
Department for Radiation Protection and Medical Physics, Hannover Medical School, Carl-Neuberg- Str. 1, 30625, Hannover, Germany.
Background: Treatment with Ra-223 dichloride is approved for the therapy of castration resistant prostate cancer (CRPC) with symptomatic bone metastases and no known visceral metastases in Europe since 2013, and Ra-223 is under discussion for labelling other molecules and nanoparticles. The direct progeny of Ra-223 is Rn-219, also known as actinon, a radioactive noble gas with a half-life of 3.98 s.
View Article and Find Full Text PDFEJNMMI Phys
January 2025
Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Eur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany.
Purpose: This retrospective analysis evaluates baseline F-flotufolastat positron emission tomography (PET) parameters as prognostic parameters for treatment response and outcome in patients with metastatic castration-resistant prostate cancer (mCRPC) undergoing treatment with [Lu]Lu-PSMA-I&T.
Methods: A total of 188 mCRPC patients with baseline F-flotufolastat PET scans were included. Tumor lesions were semiautomatically delineated, with imaging parameters including volume-based and standardized uptake value (SUV)-based metrics.
Antibodies (Basel)
January 2025
Department of Urology, Medical Center-University of Freiburg, 79106 Freiburg im Breisgau, Germany.
Background/objectives: Photoimmunotherapy (PIT) is an innovative approach for the targeted therapy of cancer. In PIT, photosensitizer dyes are conjugated to tumor-specific antibodies for targeted delivery into cancer cells. Upon irradiation with visible light, the photosensitizer dye is activated and induces cancer-specific cell death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!