Melatonin and oestrogen treatments were able to improve neuroinflammation and apoptotic processes in dentate gyrus of old ovariectomized female rats.

Age (Dordr)

Instituto de Investigación Biomédica de Vigo (IBIV), Xerencia de Xestión Integrada de Vigo, SERGAS, Biomedical Research Unit, Hospital Rebullón (CHUVI), Puxeiros s/n, 36415, MOS Pontevedra, Spain,

Published: May 2015

The aim of this study was to determine the outcomes of oestrogen and melatonin treatments following long-term ovarian hormone depletion on neuroinflammation and apoptotic processes in dentate gyrus of hippocampi. Forty-six female Wistar rats of 22 months of age were used. Twelve of them remained intact, and the other 34 were ovariectomized at 12 months of age. Ovariectomized animals were divided into three groups and treated for 10 weeks with oestrogens, melatonin or saline. All rats were killed by decapitation at 24 months of age, and dentate gyri were collected. A group of 2 month-old intact female rats was used as young control. The levels of pro-inflammatory cytokines and heat shock protein 70 (HSP 70) were analysed by ELISA. The expressions of TNFα, IL1β, GFAP, nNOS, iNOS, HO-1, NFκB, Bax, Bad, AIF, Bcl2 and SIRT1 genes were detected by real-time (RT)-PCR. Western blots were used to measure the protein expression of NFκB p65, NFκB p50/105, IκBα, IκBβ, p38 MAPK, MAP-2 and synapsin I. We have assessed the ability of 17β-oestradiol and melatonin administration to downregulate markers of neuroinflammation in the dentate gyrus of ovariectomized female rats. Results indicated that 17β-oestradiol and melatonin treatments were able to significantly decrease expression of pro-inflammatory cytokines, iNOS and HO-1 in the hippocampus when compared to non-treated animals. A similar age- and long-term ovarian hormone depletion- related increase in GFAP was also attenuated after both melatonin and oestradiol treatments. In a similar way to oestradiol, melatonin decreased the activation of p38 MAPK and NFκB pathways. The treatments enhanced the levels of synaptic molecules synapsin I and MAP-2 and have been shown to modulate the pro-antiapoptotic ratio favouring the second and to increase SIRT1 expression. These findings support the potential therapeutic role of melatonin and oestradiol as protective anti-inflammatory agents for the central nervous system during menopause.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4453938PMC
http://dx.doi.org/10.1007/s11357-014-9707-3DOI Listing

Publication Analysis

Top Keywords

dentate gyrus
12
female rats
12
melatonin
8
neuroinflammation apoptotic
8
apoptotic processes
8
processes dentate
8
gyrus ovariectomized
8
ovariectomized female
8
melatonin treatments
8
long-term ovarian
8

Similar Publications

Shift work schedules alter immune cell regulation and accelerate cognitive impairment during aging.

J Neuroinflammation

January 2025

Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.

Background: Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging.

Methods: C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule.

View Article and Find Full Text PDF

Neurodegenerative Tauopathies are a part of several neurological disorders and aging-related diseases including, but not limited to, Alzheimer's Disease, Frontotemporal Dementia with Parkinsonism, and Chronic Traumatic Encephalopathy. The major hallmarks present in these conditions include Tau pathology (composed of hyperphosphorylated Tau tangles) and synaptic loss. in vivo studies linking Tau pathology and mitochondrial alterations at the synapse, an avenue that could lead to synaptic loss, remain predominantly scarce.

View Article and Find Full Text PDF

Comparative analysis of adenosine 1 receptor expression and function in hippocampal and hypothalamic neurons.

Inflamm Res

January 2025

Medical Faculty and University Hospital, Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.

Background: Adenosine, an ATP degradation product, is a sleep pressure factor. The adenosine 1 receptor (A1R) reports sleep need. Histaminergic neurons (HN) of the tuberomamillary nucleus (TMN) fire exclusively during wakefulness and promote arousal.

View Article and Find Full Text PDF

Regulation of neural stem cells by innervating neurons.

J Neurochem

January 2025

Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.

The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.

View Article and Find Full Text PDF

Dysregulation in aversive contextual processing is believed to affect several forms of psychopathology, including post-traumatic stress disorder (PTSD). The dentate gyrus (DG) is an important brain region in contextual discrimination and disambiguation of new experiences from prior memories. The DG also receives dense projections from the locus coeruleus (LC), the primary source of norepinephrine (NE) in the mammalian brain, which is active during stressful events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!