The integrated disease network.

Integr Biol (Camb)

Department of Computing, Imperial College London, London, SW7 2AZ, UK.

Published: November 2014

The growing body of transcriptomic, proteomic, metabolomic and genomic data generated from disease states provides a great opportunity to improve our current understanding of the molecular mechanisms driving diseases and shared between diseases. The use of both clinical and molecular phenotypes will lead to better disease understanding and classification. In this study, we set out to gain novel insights into diseases and their relationships by utilising knowledge gained from system-level molecular data. We integrated different types of biological data including genome-wide association studies data, disease-chemical associations, biological pathways and Gene Ontology annotations into an Integrated Disease Network (IDN), a heterogeneous network where nodes are bio-entities and edges between nodes represent their associations. We also introduced a novel disease similarity measure to infer disease-disease associations from the IDN. Our predicted associations were systemically evaluated against the Medical Subject Heading classification and a statistical measure of disease co-occurrence in PubMed. The strong correlation between our predictions and co-occurrence associations indicated the ability of our approach to recover known disease associations. Furthermore, we presented a case study of Crohn's disease. We demonstrated that our approach not only identified well-established connections between Crohn's disease and other diseases, but also revealed new, interesting connections consistent with emerging literature. Our approach also enabled ready access to the knowledge supporting these new connections, making this a powerful approach for exploring connections between diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4ib00122bDOI Listing

Publication Analysis

Top Keywords

integrated disease
8
disease network
8
disease
8
crohn's disease
8
associations
6
diseases
5
network growing
4
growing body
4
body transcriptomic
4
transcriptomic proteomic
4

Similar Publications

Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives.

Gut Microbes

December 2025

Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.

Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.

View Article and Find Full Text PDF

Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications.

World J Microbiol Biotechnol

January 2025

Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.

Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis.

View Article and Find Full Text PDF

Association between estrogen and kidney function: population based evidence and mutual bidirectional Mendelian randomization study.

Clin Exp Nephrol

January 2025

Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Background: Previous studies have suggested a potential role of estrogen in the pathophysiology of chronic kidney disease (CKD); however, the association and causality between estrogen and kidney function remain unclear.

Methods: The cross-sectional correlation between serum estradiol concentration and estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (ACR) was analyzed using data from the National Health and Nutrition Examination Survey 2013-2016. Causality was tested using mutual bidirectional Mendelian randomization (MR) approaches based on six large-scale GWAS studies.

View Article and Find Full Text PDF

Background: Chemokines and their receptors, which regulate lymphoid organ development and immune cell trafficking, are integral to the mechanisms underlying viral control, hepatic inflammation, and liver damage in chronic hepatitis C (CHC) infection. This study explores the potential relationship between serum chemokine levels/polymorphisms and hepatitis C infection in affected individuals, with a particular focus on their utility as biomarkers across different stages of fibrosis.

Methods And Results: Serum levels of the chemokines CXCL11, CXCL12, and CXCL16 were measured in patients with mild/moderate and advanced fibrosis due to CHC, as well as in healthy controls, using the ELISA method.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!