Background: Crops in the USA are vulnerable to natural and criminal threats because of their widespread cultivation and lack of surveillance, and because of implementation of growing practices such as monoculture. To prepare for investigation and attribution of such events, forensic assays, including determination of molecular profiles, are being adapted for use with plant pathogens. The use of multi-locus variable number tandem repeat (VNTR) analysis (MLVA) and multi-locus sequence typing (MLST) in investigations involving plant pathogens may be problematic because the long lag periods between pathogen introduction and discovery of associated disease may provide enough time for evolution to occur in the regions of the genome employed in each assay. Thus, more information on the stability of the loci employed in these methods is needed.

Results: The MLVA fingerprints and MLST profiles were consistent throughout the experiment, indicating that, using a specific set of primers and conditions, MLVA and MLST typing systems reliably identify P.s. tomato DC3000. This information is essential to forensic investigators in interpreting comparisons between MLVA and MLST typing profiles observed in P.s. tomato isolates.

Conclusions: Our results indicate that MLVA and MLST typing systems, utilizing the specified primers and conditions, could be employed successfully in forensics investigations involving P.s. tomato. Similar experiments should be conducted in the field and with other high-consequence plant pathogens to ensure that the assays are reliable for pathogens infecting plants in their natural environment and for organisms that may display faster rates of mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133955PMC
http://dx.doi.org/10.1186/2041-2223-5-10DOI Listing

Publication Analysis

Top Keywords

plant pathogens
12
mlva mlst
12
mlst typing
12
multi-locus variable
8
variable number
8
number tandem
8
tandem repeat
8
multi-locus sequence
8
sequence typing
8
investigations involving
8

Similar Publications

Heat stress and pathogens are two serious yield-limiting factors of crop plants. Plants that previously experienced high but sub-lethal temperatures become subsequently tolerant to higher temperatures through the development of acquired thermotolerance (ATT). ATT activation is associated with the elevated expression of heat shock (HS)-related genes such as HSFA2, HSFA3, and HSP101.

View Article and Find Full Text PDF

Plant Species Richness and the Root Economics Space Drive Soil Fungal Communities.

Ecol Lett

January 2025

Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany.

Trait-based approaches have been increasingly used to relate plants to soil microbial communities. Using the recently described root economics space as an approach to explain the structure of soil-borne fungal communities, our study in a grassland diversity experiment reveals distinct root trait strategies at the plant community level. In addition to significant effects of plant species richness, we show that the collaboration and conservation gradient are strong drivers of the composition of the different guilds of soil fungi.

View Article and Find Full Text PDF

Background: is the causal agent of Fusarium Head Blight (FHB) on wheat and produces deoxynivalenol (DON), known to cause extreme human and animal toxicosis. This species' genome contains genes involved in plant-pathogen interactions and regulated by chromatin modifications. Moreover, histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), have been employed to study gene transcription regulation because they can convert the structure of chromatin.

View Article and Find Full Text PDF

Background: Pomegranate () fruit rich in bioactive constituents, is used as a feed supplement against bacterial pathogens in aquaculture.

Aim: This study examined the effects of supplementing the diet of the common carp () infected with on growth and some hematological, biochemical, and immunological health indicators.

Methods: Carp was fed for 7 weeks a diet of 30% crude protein and 7% crude fat, supplemented with 0, 0.

View Article and Find Full Text PDF

Understanding the influence of plant genetic factors on rhizosphere microbiome assembly in .

Front Microbiol

December 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.

Introduction: Functional rhizosphere microbiomes (FRM) are critical for plant health and yield. However, the ecological succession of FRM and their links to plant genetic factors across the life cycle of perennial plants remain poorly understood.

Methods: This study profiled FRM, including plant-beneficial bacteria (PBB) and fungal plant pathogens (FPP), across different developmental stages of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!