Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Mutations in the RAS gene in the thyroid gland result in the activation of signaling pathways and are associated with a follicular growth pattern and the probability of a carcinoma outcome ranging from 74% to 87%. In the current study, the authors investigated the cytopathologic and histopathologic features of common RAS mutation subtypes.
Methods: Malignant, indeterminate, and selected benign thyroid cytology cases were tested prospectively for the presence of NRAS61, HRAS61, and KRAS12/13 mutations. For each case, the Bethesda System for thyroid cytopathology diagnosis, additional cytologic descriptors, and surgical pathology outcomes were documented. The Fisher exact test and Wilcoxon 2-sample test were used for statistical comparison between the groups.
Results: A total of 204 thyroid fine-needle aspiration cases with RAS mutations (93.6% of which were associated with indeterminate cytopathology diagnoses) and corresponding surgical pathology resection specimens were identified. The KRAS12/13 mutation was associated with a significantly lower carcinoma outcome (41.7%) when compared with HRAS61 (95.5%) and NRAS61 (86.8%) mutations (P<.0001). Furthermore, oncocytic change was observed in a significantly higher percentage of cytology and resection specimens with KRAS12/13 mutations (66.7% and 75.0%, respectively) in comparison with those with HRAS61 (4.5% and 4.5%, respectively) and NRAS61 (15.4% and 14.7%, respectively) mutations (P<.0001). RAS mutations also were identified in cases of poorly differentiated carcinoma (NRAS61), anaplastic carcinoma (HRAS61), and medullary thyroid carcinoma (HRAS61 and KRAS12/13).
Conclusions: Subclassification of RAS mutations in conjunction with cytopathologic evaluation improves presurgical risk stratification, provides better insight into lesional characteristics, and may influence patient management. In particular, KRAS12/13-mutated thyroid nodules were found to be different from HRAS61-mutated and NRAS61-mutated nodules with regard to cytopathologic and surgical outcome characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cncy.21474 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!