Biochemical cartilage alteration and unexpected signal recovery in T2* mapping observed in ankle joints with mobile MRI during a transcontinental multistage footrace over 4486 km.

Osteoarthritis Cartilage

Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, Ulm D-89081, Germany. Electronic address:

Published: November 2014

Objective: The effect of ultra-long distance running on the ankle cartilage with regard to biochemical changes, thickness and lesions is examined in the progress of a transcontinental ultramarathon over 4486 km.

Method: In an observational field study, repeated follow-up scanning of 22 participants of the TransEurope FootRace (TEFR) with a 1.5 T MRI mounted on a mobile unit was performed. For quantitative biochemical and structural evaluation of cartilage a fast low angle shot (FLASH) T2* weighted gradient-echo (GRE)-, a turbo-inversion-recovery-magnitude (TIRM)- and a fat-saturated proton density (PD)-weighted sequence were utilized. Statistical analysis of cartilage T2* and thickness changes was obtained on the 13 finishers (12 male, mean age 45.4 years, BMI 23.5 kg/m²). None of the nine non-finisher (eight male, mean age 53.8 years, BMI 23.4 kg/m²) stopped the race due to ankle problems.

Results: From a mean of 17.0 ms for tibial plafond and 18.0 ms for talar dome articular cartilage at baseline, nearly all observed regions of interest (ROIs) of the ankle joint cartilage showed a significant T2*-signal increase (25.6% in mean), with standard error ranging from 19% to 33% within the first 2500 km of the ultra-marathon. This initial signal behavior was followed by a signal decrease. This signal recovery (30.6% of initial increase) showed a large effect size. No significant morphological or cartilage thickness changes (at baseline 2.9 mm) were observed.

Conclusion: After initial T2*-increase during the first 2000-2500 km, a subsequent T2*-decrease indicates the ability of the normal cartilage matrix to partially regenerate under ongoing multistage ultramarathon burden in the ankle joints.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joca.2014.08.001DOI Listing

Publication Analysis

Top Keywords

signal recovery
8
ankle joints
8
thickness changes
8
male age
8
years bmi
8
cartilage
7
ankle
5
biochemical cartilage
4
cartilage alteration
4
alteration unexpected
4

Similar Publications

Exploring wood-derived biochar potential for electrochemical sensing of fungicides mancozeb and maneb in environmental water samples.

Talanta

January 2025

Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000, Novi Sad, Serbia.

The sustainable material, biochar (BC) from a hardwood source, was synthesized via pyrolysis process at 400 °C (BC400) and 700 °C (BC700) and used as a modifier during the electrochemical sensor design. The prepared BCs were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, and elemental analysis (CHNS). The development of rapid analytical techniques for detecting pesticides employing a low-cost carbon paste electrode (CPE) modified with BC is a novel strategy to provide a sensitive response to water pollution.

View Article and Find Full Text PDF

A dual action electrochemical molecular imprinting sensor based on FeCu-MOF and RGO/PDA@MXene hybrid synergies for trace detection of ribavirin.

Food Chem

January 2025

Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, PR China. Electronic address:

In this study, we designed a molecularly imprinted electrochemical sensor based on the reduced graphene oxide/polydopamine@Mxene (RPM) and FeCu-MOF for the detection of antiviral drug ribavirin (RBV). The RPM composite enhances the active surface area and electron transport capacity of the sensor, and the incorporation of FeCu-MOF can not only further improve the catalytic performance of the material, but also enables the sensor to harness the electrical reduction signal of HO. Furthermore, we developed an optimized molecularly imprinted polymer via density functional theory (DFT) to enhance the sensor's specificity and sensitivity for RBV detection.

View Article and Find Full Text PDF

Stress urinary incontinence (SUI) currently lacks effective treatment options, and the restoration of neurological function remains a major challenge, with unmet clinical needs. Research has indicated that adipose-derived stem cells (ADSCs) can be induced to differentiate into neural-induced adipose-derived stem cells (NI-ADSCs) under specific inductive conditions, exhibiting excellent neuroregenerative capabilities. ADSCs were obtained from female SD rats and induced into NI-ADSCs.

View Article and Find Full Text PDF

A functional cardiac patch promotes cardiac repair by modulating the CCR2 cardiac-resident macrophage niche and their cell crosstalk.

Cell Rep Med

January 2025

Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China. Electronic address:

C-C chemokine receptor type 2 (CCR2) cardiac-resident macrophages (CCR2 cRMs) are known to promote cardiac repair after myocardial infarction (MI). However, the substantial depletion and slow recovery of CCR2 cRMs pose significant barriers in cardiac recovery. Here, we construct a functional conductive cardiac patch (CCP) that can provide exogenously elastic conductive microenvironment and induce endogenously reparative microenvironment mediated by CCR2 cRMs for MI repair.

View Article and Find Full Text PDF

Background And Objectives: Cognitive deficits represent a major long-term complication of anti-leucine-rich, glioma-inactivated 1 encephalitis (LGI1-E). Although severely affecting patient outcomes, the structural brain changes underlying these deficits remain poorly understood. In this study, we hypothesized a link between white matter (WM) networks and cognitive outcomes in LGI1-E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!