Objective: While impaired glucose tolerance diagnosed by the oral glucose tolerance test (OGTT) is a common trait in obese individuals, less is known about changes in levels of other metabolites. The aim was to reveal the complex alterations in metabolite levels provoked by an OGTT and its perturbation in obese individuals.

Methods: Gas chromatography/mass spectrometry was used to profile metabolite levels in serum from 14 obese participants (body mass index [BMI] of 43.6 ± 1.5 kg m(-2) [mean ± SEM]) at 0, 30, and 120 min during a standard 2-h 75 g OGTT. Metabolite profiles from six lean individuals (BMI of 22.4 ± 2.4 kg m(-2) ), collected from a previous study, were included for comparison.

Results: In the obese group, 59 metabolite profiles were determined. Among these, 16 deviated from profiles in the lean group. Deviating metabolites were categorized into three groups. Delayed reduction in levels of five fatty acids. Increased levels at 30 min of five amino acids, including isoleucine and leucine. A blunted increase at 30 min of six metabolites.

Conclusions: Metabolomics analysis revealed distinct differences in alterations of metabolite levels during an OGTT in obese and lean subjects. To this end, our data suggests a disrupted regulation of ketogenesis, lipolysis and proteolysis in obese individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/oby.20868DOI Listing

Publication Analysis

Top Keywords

glucose tolerance
12
obese individuals
12
metabolite levels
12
oral glucose
8
alterations metabolite
8
metabolite profiles
8
profiles lean
8
obese
7
metabolite
6
levels
6

Similar Publications

Role of miR-125b-5p in modulating placental SIRT7 expression and its implications for lipid metabolism in gestational diabetes.

J Reprod Immunol

December 2024

Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India. Electronic address:

Gestational diabetes is marked impaired glucose tolerance, poses various adverse outcomes including increased BMI and obesity. These outcomes results from excess lipid accumulation which is marked by elevated triglycerides. In GDM, placenta exhibits altered lipid metabolism, including reduced fatty acid oxidation and increased triglyceride accumulation.

View Article and Find Full Text PDF

Background: Gestational Diabetes Mellitus (GDM) is a common complication during pregnancy. Late diagnosis can have significant implications for both the mother and the fetus. This research aims to create an early prediction model for GDM in the first trimester of pregnancy.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects.

Curr Obes Rep

January 2025

Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.

Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.

Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!