microRNAs: role in leukemia and their computational perspective.

Wiley Interdiscip Rev RNA

Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India.

Published: August 2015

MicroRNAs (miRNAs) belong to the family of noncoding RNAs (ncRNAs) and had gained importance due to its role in complex biochemical pathways. Changes in the expression of protein coding genes are the major cause of leukemia. Role of miRNAs as tumor suppressors has provided a new insight in the field of leukemia research. Particularly, the miRNAs mediated gene regulation involves the modulation of multiple mRNAs and cooperative action of different miRNAs to regulate a particular gene expression. This highly complex array of regulatory pathway network indicates the great possibility in analyzing and identifying novel findings. Owing to the conventional, slow experimental identification process of miRNAs and their targets, the last decade has witnessed the development of a large amount of computational approaches to deal with the complex interrelations present within biological systems. This article describes the various roles played by miRNAs in regulating leukemia and the role of computational approaches in exploring new possibilities.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wrna.1256DOI Listing

Publication Analysis

Top Keywords

leukemia role
8
computational approaches
8
mirnas
6
micrornas role
4
leukemia
4
role leukemia
4
leukemia computational
4
computational perspective
4
perspective micrornas
4
micrornas mirnas
4

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) stands as the sixth most common cause of cancer-related mortality on a global scale, with a strikingly high proportion-over half-of these fatalities occurring within China. The emergence of radiation resistance in ESCC patients significantly diminishes overall survival rates, complicating treatment regimens and reducing clinical outcomes. There is an urgent need to explore the molecular mechanisms that underpin radiation resistance in ESCC, which could lead to the identification of new therapeutic targets aimed at overcoming this resistance.

View Article and Find Full Text PDF

Background: Clonal mature B-cell lymphoproliferative disorders (B-LPDs) are a heterogeneous group of neoplasia characterized by the proliferation of mature B lymphocytes in the peripheral blood, bone marrow and/or lymphoid tissues. B-LPDs classification into different subtypes and their diagnosis is based on a multiparametric approach. However, accurate diagnosis may be challenging, especially in cases of ambiguous interpretation.

View Article and Find Full Text PDF

Background: High mobility group box 1 (HMGB1) plays an essential role in various pathological conditions, including inflammation, fibrosis, autoimmune diseases, and carcinogenesis. The quantification of HMGB1 in body fluids holds promise for clinical applications.

Objectives: This study aimed to isolate high-affinity single-stranded DNA (ssDNA) aptamers that target HMGB1.

View Article and Find Full Text PDF

Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells.

View Article and Find Full Text PDF

LDHAα, a lactate dehydrogenase A isoform, promotes glycolysis and tumor progression.

FEBS J

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Lactate dehydrogenase A (LDHA) is upregulated in multiple cancer types and contributes to the Warburg effect. Several studies have found that many tumor-related genes have subtypes and play important roles in promoting cancer development. Here, we identified a novel LDHA transcript, which produced a new protein 3 kDa larger than LDHA, which we named LDHAα.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!