Use of liposome-encapsulated hemoglobin (LEH) for oxygen delivery in the treatment of cerebral ischemia has been studied previously and its expected benefits confirmed. However, the relationship between the timing of administration and the efficacy of LEH in cerebral ischemia has not been studied in detail. We therefore investigated the therapeutic time window of LEH by using a rat model of cerebral ischemia, as well as evaluating the contribution of oxygen delivery to the efficacy of LEH. Dose-dependent effects and the therapeutic time window of LEH were studied using models of transient and permanent middle cerebral artery occlusion (MCAO), respectively, in SD rats. LEH was intravenously administered at 0.5 h after the onset of ischemia in the transient MCAO model and at 0.5, 2, 4, or 6 h in the permanent MCAO model. Efficacy of LEH treatment was evaluated using the infarct volume, which was examined with 2,3,5-triphenyltetrazolium chloride staining and estimated by integrating the unstained areas in serial sections of cerebral tissue. Effects of oxygen delivery by LEH were examined immunohistochemically with pimonidazole to stain for areas of low oxygen tension in the tissue. LEH treatment dose-dependently reduced the cerebral infarct volume, which was especially significant in the cortical region at doses of over 60 mg hemoglobin (Hb)/kg. In rats with permanent MCAO, LEH administration at a dose of 300 mg Hb/kg at 0.5 h and 2 h after the onset of cerebral ischemia significantly reduced cerebral infarct volume. Furthermore, immunohistochemical staining with pimonidazole showed that the areas of cerebral tissue that were hypoxic and had abnormal histological structure were reduced after LEH treatment. These results indicated that LEH is efficacious in the treatment of cerebral infarction secondary to MCAO and that oxygen delivery to ischemic cerebral tissues by LEH administered early after the onset of cerebral ischemia contributes to this effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/aor.12358 | DOI Listing |
Stroke
February 2025
Neurovascular Research Unit, Pharmacology Department, Complutense Medical School, Instituto Investigación Hospital 12 Octubre, Madrid, Spain (G.D., B.D., A.M., J.M.P., I.L.).
Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.
View Article and Find Full Text PDFStroke
February 2025
Division of Interventional Neuroradiology, Department of Radiology (H.C., S.M., D.G.), University of Maryland Medical Center, Baltimore.
Background: Sex-specific differences in stroke risk factors, clinical presentation, and outcomes are well documented. However, little is known about real-world differences in transient ischemic attack (TIA) hospitalizations and outcomes between men and women.
Methods: This was a retrospective cohort study of the 2016 to 2021 Nationwide Readmissions Database in the United States.
Neurosci Bull
January 2025
Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
Antioxid Redox Signal
January 2025
Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.
View Article and Find Full Text PDFRadiol Case Rep
March 2025
Department of Radiology, Tenri Hospital, Nara, Japan.
We report the case of a 62-year-old male on long-term hemodialysis who was admitted to our hospital due to acute cerebral infarction associated with a cardiac calcified amorphous tumor (CAT). The patient presented with recurrent episodes of syncope and retrograde amnesia. Brain MRI identified multiple acute cerebral infarctions, while transthoracic echocardiography (TTE) revealed a 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!