Transforming growth factor-β1 mediates psoriasis-like lesions via a Smad3-dependent mechanism in mice.

Clin Exp Pharmacol Physiol

Li Ka Shing Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of HongKong, Hong Kong, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.

Published: November 2014

Transforming growth factor (TGF)-β1 signals through downstream Smad-dependent and -independent pathways to exert its biological actions. It has been reported that overexpression of TGF-β1 results in the development of psoriasis-like lesions in a mouse model of K5.TGF-β(WT) transgenic mice. However, the signalling mechanisms by which TGF-β1 mediates the development of psoriasis-like lesions remain unknown. The aim of the present study was to investigate the hypothesis that TGF-β1 mediates the development of psoriasis-like lesions via a Smad3-dependent mechanism. This was tested in a mouse model of K5.TGF-β(WT) transgenic mice by blocking TGF-β signalling with a specific Smad3 inhibitor. Topical treatment with a Smad3 inhibitor markedly blocked TGF-β/Smad3 signalling and progressive psoriasis-like lesions in K5.TGF-β(WT) transgenic mice, as evidenced by decreased skin severity scores, double skin fold thickness (DSFT) scores, infiltration of CD3(+) T cells and F4/80(+) macrophages and the degree of fibrosis in the dermis. This was associated with a marked reduction in TGF-β1, interleukin (IL)-6, IL-23 and IL-17A both locally in skin plaque lesions and systemically in the plasma, resulting in inhibition of both the T helper (Th) 17 cell transcription factor RORγt and accumulation of CD4(+) IL-17A(+) cells within the skin plaque lesions. In conclusion, TGF-β1 mediates the development of psoriasis-like lesions via a Smad3-dependent, Th17-mediated mechanism. Targeting TGF-β/Smad3 signalling with a Smad3 inhibitor may represent a novel and effective therapy for psoriasis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1440-1681.12294DOI Listing

Publication Analysis

Top Keywords

psoriasis-like lesions
24
development psoriasis-like
16
lesions smad3-dependent
12
k5tgf-βwt transgenic
12
transgenic mice
12
tgf-β1 mediates
12
mediates development
12
smad3 inhibitor
12
transforming growth
8
lesions
8

Similar Publications

Guggulsterone ameliorates psoriasis by inhibiting keratinocyte proliferation and inflammation through induction of miR-17 directly targeting JAK1 and STAT3.

Biochem Pharmacol

January 2025

Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan 250011, China. Electronic address:

The pathogenesis of psoriasis involves hyperproliferation of epidermal keratinocytes and abnormal interactions between activated keratinocytes and infiltrating immune cells. Emerging evidence has shown that keratinocytes play essential roles in both the initiation and maintenance of psoriasis, suggesting that exposing keratinocytes to agents with antiproliferative and anti-inflammatory effects may be effective for psoriasis treatment. Guggulsterone (GS), a plant sterol derived from the gum resin of Commiphora wightii, possesses a variety of pharmacological activities.

View Article and Find Full Text PDF

Protocatechuic aldehyde ameliorates psoriasis-like skin inflammation and represses keratinocyte-derived IL-1α and CXCL9 via inhibiting STAT3 activation.

Int Immunopharmacol

January 2025

Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106 China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106 China; School of Basic Medical Sciences, Chengdu University, Chengdu 610106 China. Electronic address:

Psoriasis is a chronic inflammatory skin disease. Consistent activation of Signal Transducer and Activator of Transcription 3 (STAT3) in epidermal keratinocyte transactivates various keratinocyte-derived pro-inflammatory cytokines and elicits spontaneous psoriasis-like skin inflammation. In the current study, we first report that topical application of protocatechuic aldehyde (PA), the bioactive compound from Salvia miltiorrhiza (Danshen), significantly improved psoriasis-like skin symptoms and reduced immune cell infiltration in psoriatic lesions.

View Article and Find Full Text PDF

Psoriasis is a chronic, systemic immune-mediated skin disease. Although many new strategies for psoriasis treatment have been developed, there is great need in clinic for treating psoriasis. Gentiopicroside (GPS), derived from Gentiana manshurica Kitagawa, has multiple pharmacological activities including anti-inflammatory, anti-oxidative and antiviral activities.

View Article and Find Full Text PDF

Knockdown of GSDMD inhibits pyroptosis in psoriasis by blocking the NOD-like receptor signaling pathway.

Int Immunopharmacol

January 2025

Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Joint Organization of Jiangxi Clinical Medicine Research Center for Dermatology, Ganzhou 341000, China. Electronic address:

Background: Psoriasis is a chronic inflammatory skin disease regulated by autoimmunity, and pyroptosis plays an important role in this condition. This research sought to examine the function and potential molecular pathway of Gasdermin D (GSDMD) in psoriasis.

Methods: GSDMD expression was examined by immunohistochemistry in biopsied skin tissues from patients with psoriasis.

View Article and Find Full Text PDF

Background: Patients with syphilis are the only source of infection, which can be transmitted through sexual contact and mother-to-child and blood transmission, and rarely through contaminants. The clinical manifestations of syphilis are complex and variable, and can be easily misdiagnosed. This article reports a case of syphilis in a child with "psoriasis"-like lesions who was fed pre-chewed food.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!