Proteins interact with each other to fulfill their functions. The importance of weak protein-protein interactions has been increasingly recognized. However, owing to technical difficulties, ultra-weak interactions remain to be characterized. Phosphorylation can take place via a K(D)≈25 mM interaction between two bacterial enzymes. Using paramagnetic NMR spectroscopy and with the introduction of a novel Gd(III)-based probe, we determined the structure of the resulting complex to atomic resolution. The structure accounts for the mechanism of phosphoryl transfer between the two enzymes and demonstrates the physical basis for their ultra-weak interaction. Further, molecular dynamics (MD) simulations suggest that the complex has a lifetime in the micro- to millisecond regimen. Hence such interaction is termed a fleeting interaction. From mathematical modeling, we propose that an ultra-weak fleeting interaction enables rapid flux of phosphoryl signal, providing a high effective protein concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201405976 | DOI Listing |
Bioorg Med Chem Lett
December 2024
Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA. Electronic address:
Carbohydrates play crucial roles in biological systems, including by mediating cell and protein interactions. The complexity and transient nature of carbohydrate-dependent interactions pose significant challenges for their characterization, as traditional techniques often fail to capture these low-affinity binding events. This review highlights the increasing utility of photocrosslinkers in studying carbohydrate-mediated interactions.
View Article and Find Full Text PDFScience
September 2024
Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
The entrance channel of bimolecular reactions sometimes involves the formation of outer complexes as weakly bound, fleeting intermediates. Here, we characterize such an outer complex in a system that models the bimolecular, C-O bond-forming reaction of a phosphine oxide Lewis base with a carbenium Lewis acid. Crystallographic studies show that the C-O distance in the outer form exceeds that of the final or inner adduct by 1.
View Article and Find Full Text PDFbioRxiv
August 2024
Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA.
The physical properties of cellular membranes, including fluidity and function, are influenced by protein and lipid interactions. In situ labeling chemistries, most notably proximity-labeling interactomics are well suited to characterize these dynamic and often fleeting interactions. Established methods require distinct chemistries for proteins and lipids, which limits the scope of such studies.
View Article and Find Full Text PDFR Soc Open Sci
July 2024
School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK.
Depression affects the recognition of emotion in facial expressions by reducing the detection accuracy and adding a bias towards negativity. However, no study has examined associations between depression and the recognition of microfacial expressions (fleeting facial cues of emotions in people's faces). Thus, we investigated associations between low mood and micro-expression processing using video stimuli of micro-expressions.
View Article and Find Full Text PDFRes Sq
July 2024
Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA.
The functional significance of the interactions between proteins in living cells to form short-lived quaternary structures cannot be overemphasized. Yet, quaternary structure information is not captured by current methods, neither can those methods determine structure within living cells. The dynamic versatility, abundance, and functional diversity of G protein-coupled receptors (GPCRs) pose myriad challenges to existing technologies but also present these proteins as the ideal testbed for new technologies to investigate the complex inter-regulation of receptor-ligand, receptor-receptor, and receptor-downstream effector interfaces in living cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!