Cells have to cope with stressful conditions and adapt to changing environments. Heat stress, heavy metal ions or UV stress induce damage to cellular proteins and disturb the balanced status of the proteome. The adjusted balance between folded and folding proteins, called protein homoeostasis, is required for every aspect of cellular functionality. Protective proteins called chaperones are expressed under extreme conditions in order to prevent aggregation of cellular proteins and safeguard protein quality. These chaperones co-operate during de novo folding, refolding and disaggregation of damaged proteins and in many cases refold them to their functional state. Even under physiological conditions these machines support protein homoeostasis and maintain the balance between de novo folding and degradation. Mutations generating unstable proteins, which are observed in numerous human diseases such as Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis and cystic fibrosis, also challenge the protein quality control system. A better knowledge of how the protein homoeostasis system is regulated will lead to an improved understanding of these diseases and provide potential targets for therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/bse0560053 | DOI Listing |
Mol Cell
January 2025
MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. Electronic address:
Unassembled and partially assembled subunits of multi-protein complexes have emerged as major quality control clients, particularly under conditions of imbalanced gene expression such as stress, aging, and aneuploidy. The factors and mechanisms that eliminate such orphan subunits to maintain protein homeostasis are incompletely defined. Here, we show that the UBR4-KCMF1 ubiquitin ligase complex is required for the efficient degradation of multiple unrelated orphan subunits from the chaperonin, proteasome cap, proteasome core, and a protein targeting complex.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
Proc Natl Acad Sci U S A
February 2025
Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892.
Hsp70, Hsp90, and ClpB/Hsp100 are molecular chaperones that help regulate proteostasis. Bacterial and yeast Hsp70s and their cochaperones function synergistically with Hsp90s to reactivate inactive and aggregated proteins by a mechanism that requires a direct interaction between Hsp90 and Hsp70 both in vitro and in vivo. and yeast Hsp70s also collaborate in bichaperone systems with ClpB and Hsp104, respectively, to disaggregate and reactivate aggregated proteins and amyloids such as prions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!