Block polymers (BPs) derived from biomass (biobased) are necessary components of a sustainable future that relies minimally on petroleum-based plastics for applications ranging from thermoplastic elastomers and pressure-sensitive adhesives to blend compatibilizers. To facilitate their adoption, renewable BPs must be affordable, durable, processable, versatile, and reasonably benign. Their desirability further depends on the relative sustainability of the renewable resources and the methods employed in the monomer and polymer syntheses. Various strategies allow these BPs' characteristics to be tuned and enhanced for commercial applications, and many of these techniques also can be applied to manipulate the wide-ranging mechanical and thermal properties of biobased and self-assembling block polymers. From feedstock to application, this review article highlights promising renewable BPs, plus their material and assembly properties, in support of de novo design strategies that could revolutionize material sustainability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4sm01220h | DOI Listing |
Sci Rep
January 2025
Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates.
The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Background/objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland.
Alginate hydrogels have gathered significant attention in biomedical engineering due to their remarkable biocompatibility, biodegradability, and ability to encapsulate cells and bioactive molecules, but much less has been reported on the kinetics of gelation. Scarce experimental data are available on cross-linked alginates (AL) with bioactive components. The present study addressed a novel method for defining the crosslinking mechanism using rheological measurements for aqueous mixtures of AL and calcium chloride (CaCl) with the presence of hydroxyapatite (HAp) as filler particles.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!