Reconstruction of insulin signal flow from phosphoproteome and metabolome data.

Cell Rep

Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, Japan Science and Technology Corporation, Bunkyo-ku, Tokyo 113-0033, Japan. Electronic address:

Published: August 2014

Cellular homeostasis is regulated by signals through multiple molecular networks that include protein phosphorylation and metabolites. However, where and when the signal flows through a network and regulates homeostasis has not been explored. We have developed a reconstruction method for the signal flow based on time-course phosphoproteome and metabolome data, using multiple databases, and have applied it to acute action of insulin, an important hormone for metabolic homeostasis. An insulin signal flows through a network, through signaling pathways that involve 13 protein kinases, 26 phosphorylated metabolic enzymes, and 35 allosteric effectors, resulting in quantitative changes in 44 metabolites. Analysis of the network reveals that insulin induces phosphorylation and activation of liver-type phosphofructokinase 1, thereby controlling a key reaction in glycolysis. We thus provide a versatile method of reconstruction of signal flow through the network using phosphoproteome and metabolome data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2014.07.021DOI Listing

Publication Analysis

Top Keywords

signal flow
12
phosphoproteome metabolome
12
metabolome data
12
insulin signal
8
signal flows
8
flows network
8
signal
5
reconstruction insulin
4
flow phosphoproteome
4
data cellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!