The expression of carbonic anhydrase IX (CA IX) and its relationship to acidosis in lymphomas has not been widely studied. We investigated the protein expression of CA IX in a human B-cell lymphoma tissue microarray, and in Raji, Ramos and Granta 519 lymphoma cell lines and tumor models, while also investigating the relationship with hypoxia. An imaging method, acidoCEST magnetic resonance imaging (MRI), was used to estimate lymphoma xenograft extracellular pH (pHe). Our results showed that clinical lymphoma tissues and cell line models in vitro and in vivo had moderate CA IX expression. Although in vitro studies showed that CA IX expression was induced by hypoxia, in vivo studies did not show this correlation. Untreated lymphoma xenograft tumor pHe had acidic fractions, and an acidity score was qualitatively correlated with CA IX expression. Therefore, CA IX is expressed in B-cell lymphomas and is qualitatively correlated with extracellular acidosis in xenograft tumor models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697737PMC
http://dx.doi.org/10.3109/10428194.2014.933218DOI Listing

Publication Analysis

Top Keywords

carbonic anhydrase
8
b-cell lymphoma
8
lymphoma cell
8
cell models
8
tumor models
8
lymphoma xenograft
8
xenograft tumor
8
qualitatively correlated
8
expression
6
lymphoma
6

Similar Publications

Ancestral carbonic anhydrase with significantly enhanced stability and activity for CO capture and utilization.

Bioresour Technol

January 2025

Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China. Electronic address:

Carbonic anhydrases (CAs) has garnered increasing attention in carbon capture, utilization and storage (CCUS) due to their ecological friendliness. However, most of them suffer susceptibility to deactivation in harsh conditions. Herein, a reliable dataset was adopted for creating ancestral CAs through an optimized ancestral sequence reconstruction (ASR) method.

View Article and Find Full Text PDF

Recent Advances and Future Directions in Extracorporeal Carbon Dioxide Removal.

J Clin Med

December 2024

Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London SE1 9RT, UK.

Extracorporeal carbon dioxide removal (ECCOR) is an emerging technique designed to reduce carbon dioxide (CO) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCOR operates at lower blood flows (0.4-1.

View Article and Find Full Text PDF

Exploring the Inhibition of α-Carbonic Anhydrase by Sulfonamides: Insights into Potential Drug Targeting.

Int J Mol Sci

December 2024

Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.

, the causative agent of toxoplasmosis, is a protozoan parasite capable of infecting a wide range of hosts, posing significant health risks, particularly to immunocompromised individuals and congenital transmission. Current therapeutic options primarily target the active tachyzoite stage but are limited by issues such as toxicity and incomplete efficacy. As a result, there is an urgent need for alternative therapies that can selectively target parasite-specific mechanisms critical for metabolic processes and host-parasite interactions.

View Article and Find Full Text PDF

The green unicellular algae contains 12-13 carbonic anhydrases (CAs). For a long time, the two closely related α-CAs of the periplasmic membrane CAH1 and CAH2 were considered to be the CAs with the highest CO hydration activity. The recombinant protein α-CA CAH3 (rCAH3) from the thylakoid lumen obtained in the present study showed more than three times higher activity compared to CAH1 and more than 11 times higher compared to previous studies with rCAH3.

View Article and Find Full Text PDF

Novel 3-sulfonamide pyrrol-2-one derivatives containing two sulfonamide groups were synthesized via a one-pot, three-component method using trifluoroacetic acid as a catalyst. Structural confirmation was achieved using spectroscopic techniques. The compounds were tested against four selected human carbonic anhydrase isoforms (hCA I, hCA II, hCA IX, and hCA XII).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!