Ultrathin core-sheath fibers with small unilamellar vesicles (SUVs) in the core were prepared by coaxial electrospinning. SUVs/sodium hyaluranate (HA-Na)/water and polyvinylpyrrolidone (PVP)/ethanol solutions were used as core and sheath fluid in electrospinning, respectively. The ultrathin fibers were characterized by scanning and transmission electron microscopy (SEM and TEM) and laser scanning confocal microscopy (LSCM). The SUVs were successfully encapsulated in the core HA-Na matrix of the ultrathin fibers and are in the elliptic shape. The SUVs encapsulated in the core matrix of the ultrathin fibers have an excellent stability. The SUVs embedded in the ultrathin fibers are stable. When the ultrathin fibers were re-dissolved in water after one-month storage at room temperature, the rehydrated SUVs have the similar size and size distribution as the as-prepared SUVs. The liposome-loaded ultrathin fiber mats have the promising applications in wound healing materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2014.07.042 | DOI Listing |
Nanoscale
January 2025
Pro2TecS - Chemical Product and Process Technology Research Center. Department of Chemical Engineering and Materials Science. Universidad de Huelva. ETSI, Campus de "El Carmen", 21071 Huelva, Spain.
This study explores the preparation of lubricating oleo-dispersions using electrospun nanofibrous mats made from low-sulfonate lignin (LSL) and polycaprolactone (PCL). The rheological and tribological properties of the oleo-dispersions were significantly modulated for the first time through the exploration of LSL/PCL ratio and electrospinning conditions such as applied voltage, distance between the tip and collector, flow rate, ambient humidity, and collector configuration. Adequate uniform ultrathin fibers and Small-amplitude oscillatory shear (SAOS) functions of the oleo-dispersions, with storage modulus values ranging from 10 to 10 Pa at 25 °C, were obtained with a flow rate of 0.
View Article and Find Full Text PDFAdv Mater
January 2025
Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China.
Textiles have played a pivotal role in human development, evolving from basic fibers into sophisticated, multifunctional materials. Advances in material science, nanotechnology, and electronics have propelled next-generation textiles beyond traditional functionalities, unlocking innovative possibilities for diverse applications. Thermal management textiles incorporate ultralight, ultrathin insulating layers and adaptive cooling technologies, optimizing temperature regulation in dynamic and extreme environments.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).
View Article and Find Full Text PDFRev Sci Instrum
December 2024
OFS Laboratories, 19 Schoolhouse Road, Somerset, New Jersey 08873, USA.
Transmission matrix measurements of multimode fibers are now routinely performed in numerous laboratories, enabling control of the electric field at the distal end of the fiber and paving the way for the potential application to ultrathin medical endoscopes with high resolution. The same concepts are applicable to other areas, such as space division multiplexing, targeted power delivery, fiber laser performance, and the general study of the mode coupling properties of the fiber. However, the process of building an experimental setup and developing the supporting code to measure the fiber's transmission matrix remains challenging and time consuming, with full details on experimental design, data collection, and supporting algorithms spread over multiple papers or lacking in detail.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Icon Lab Gmbh Ltd., 1 Barrikad St., Nizhny Novgorod 603003, Russia.
Polymer heart valves are a promising alternative to bioprostheses, the use of which is limited by the risks of calcific deterioration of devitalized preserved animal tissues. This is especially relevant in connection with the increasingly widespread use of transcatheter valves. Advances in modern organic chemistry provide a wide range of polymers that can replace biological material in the production of valve prostheses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!