We investigated the mechanical properties (Young's modulus, bending stiffness, barb separation forces) of the tenth primary of the wings, of the alulae and of the middle tail feathers of Falco peregrinus. For comparison, we also investigated the corresponding feathers in pigeons (Columba livia), kestrels (Falco tinnunculus), and sparrowhawks (Accipiter nisus). In all four species, the Young's moduli of the feathers ranged from 5.9 to 8.4 GPa. The feather shafts of F. peregrinus had the largest cross-sections and the highest specific bending stiffness. When normalized with respect to body mass, the specific bending stiffness of primary number 10 was highest in F. tinnunculus, while that of the alula was highest in A. nisus. In comparison, the specific bending stiffness, measured at the base of the tail feathers and in dorso-ventral bending direction, was much higher in F. peregrinus than in the other three species. This seems to correlate with the flight styles of the birds: F. tinnunculus hovers and its primaries might therefore withstand large mechanical forces. A. nisus has often to change its flight directions during hunting and perhaps needs its alulae for this maneuvers, and in F. peregrinus, the base of the tail feathers might need a high stiffness during breaking after diving.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmor.20317 | DOI Listing |
J Hazard Mater
December 2024
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
This study investigated the bioaccumulation of halogenated organic pollutants (HOPs) in three types of feathers from laying hens through exposure experiments. The HOPs included lipophilic polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), as well as proteinophilic perfluoroalkyl carboxylic acids (PFCAs). Concentrations of PCBs, PBDEs, and short-chain PFCAs (≤8) were significantly higher in the body feathers than in the primary feathers, while long-chain PFCAs (>8) showed no significant differences among primary, tail, and body feathers.
View Article and Find Full Text PDFSci Robot
November 2024
School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
J Morphol
November 2024
Department of Zoology, Weber State University, Ogden, Utah, USA.
Woodpeckers (Order Piciformes) belong to a group of birds characterized by their hammering capabilities in which the bill is utilized as a tool to probe for food and to excavate nest cavities. They have numerous specializations for this behavior, including their bill and tongue, feet for gripping vertical tree trunks, and tail feathers with thickened shafts to provide stability as a postural appendage. We hypothesized that (1) woodpecker tail musculature is also modified for clinging behaviors with a heterogeneous distribution of fast and slow muscle fibers, and that (2) the tree-trunk foraging Hairy Woodpeckers would have more slow muscle fibers in their M.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
Biomimetics (Basel)
August 2024
Department of Mechanical Engineering, California State University, Northridge, CA 91330, USA.
Despite the tremendous advances in aircraft design that led to successful powered flights of aircraft as heavy as the Antonov An-225 Mriya, which weighs 640 tons, or as fast as the NASA-X-43A, which reached a record of Mach 9.6, many characteristics of bird flight have yet to be utilized in aircraft designs. These characteristics enable various species of birds to fly efficiently in gusty environments and rapidly change their momentum in flight without having modern thrust vector control (TVC) systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!