The community structure and distribution of secondary riparian Bambusa rigida in lower Gongjiang River were studied by the transect sampling method and reverse age-class addition. The species in tree and shrub layers in the riparian B. rigida community had the strong native trait. Along the river gradient, the associated species in tree and shrub layers were fragmented, and associated with shore highland plants, suggesting that their distribution did not meet the RCC theory of continuous riparian law. Plant species in herb layer was in accordance with the RCC law, and the species abundance in lower reach was the greatest with 29 families, 55 genera, and 70 species. B. rigida was absolutely dominant in the riparian communities and adapted to the regulation of tree density and physiological integration. The proliferation ratio of B. rigida rapidly decreased to become stabilized, and the degree of its clump dispersion pattern gradually increased. The average density of secondary riparian B. rigida was 114-141 bamboo trees per clump, and the community was in the mid- and late succession stage.

Download full-text PDF

Source

Publication Analysis

Top Keywords

structure distribution
8
riparian bambusa
8
bambusa rigida
8
rigida lower
8
lower gongjiang
8
gongjiang river
8
secondary riparian
8
species tree
8
tree shrub
8
shrub layers
8

Similar Publications

Microscopic insights into the effects of interfacial dynamics and nanoconfinement on characteristics of calcium carbonate clusters within two-dimensional nanochannels.

Phys Chem Chem Phys

January 2025

College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.

Herein, the interfacial effects on calcium carbonate clustering within two-dimensional (2D) graphene nanochannels were systematically investigated using molecular dynamics simulations. The distribution characteristics of the ions at the interface can be attributed to the ordered water layers within the 2D nanochannels. The orientation of CO is approximately perpendicular to the interface, which can be attributed to hydrogen bonding and its association with Ca at the interface region.

View Article and Find Full Text PDF

is a genus of over 50 species that are commonly used in primary care in several countries. This study seeks to inspire researchers to quickly discover and isolate the key active metabolites found in taxa, thereby promoting the development of novel, safe, and effective therapies for a variety of illnesses. To this end, we performed a thorough search of English-language publications from PubMed, Scopus, ScienceDirect, Web of Science, Google Scholar, and ResearchGate.

View Article and Find Full Text PDF

Anti-Scar Effects of Micropatterned Hydrogel after Glaucoma Drainage Device Implantation.

Research (Wash D C)

January 2025

Department of Ophthalmology, The Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.

Excessive fibrosis is the primary factor for the failure of glaucoma drainage device (GDD) implantation. Thus, strategies to suppress scar formation in GDD implantation are crucial. Although it is known that in implanted medical devices, microscale modification of the implant surface can modulate cell behavior and reduce the incidence of fibrosis, in the field of ophthalmic implants, especially the modification and effects of hydrogel micropatterns have rarely been reported.

View Article and Find Full Text PDF

Purpose: In prostate cancer patients, high radiation doses to the urethra have been associated with an increased risk of severe genitourinary toxicity following dose-escalated radiotherapy. Urethra-sparing techniques have emerged as a promising approach to reduce urinary toxicity. This international survey aims to evaluate current global practices in urethra-sparing and explore future directions for the implementation of this technique in external beam radiotherapy (EBRT) for prostate cancer.

View Article and Find Full Text PDF

Morphology, phylogeography, phylogeny, and taxonomy of (Apiaceae).

Front Plant Sci

January 2025

Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.

Background: The genus is endemic to China and belongs to the Apiaceae family, which is widely distributed in the Himalaya-Hengduan Mountains (HHM) region. However, its morphology, phylogeny, phylogeography, taxonomy, and evolutionary history were not investigated due to insufficient sampling and lack of population sampling and plastome data. Additionally, we found that was not similar to members but resembled species in morphology, indicating that the taxonomic position of needs to be re-evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!