Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alternative strategies are required when autograft tissue is not sufficient or available to reconstruct damaged tendons. Electrospun fibre yarns could provide such an alternative. This study investigates the seeding of human mesenchymal stem cells (hMSC) on electrospun yarns and their response when subjected to dynamic tensile loading. Cell seeded yarns sustained 3600 cycles per day for 21 days. Loaded yarns demonstrated a thickened cell layer around the scaffold׳s exterior compared to statically cultured yarns, which would suggest an increased rate of cell proliferation and/or matrix deposition, whilst maintaining a predominant uniaxial cell orientation. Tensile properties of cell-seeded yarns increased with time compared to acellular yarns. Loaded scaffolds demonstrated an up-regulation in several key tendon genes, including collagen Type I. This study demonstrates the support of hMSCs on electrospun yarns and their differentiation towards a tendon lineage when mechanically stimulated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180006 | PMC |
http://dx.doi.org/10.1016/j.jmbbm.2014.07.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!