Carboxymethylcellulose film for bacterial wound infection control and healing.

Carbohydr Polym

Non-Destructive Biomedical and Pharmaceutical Research Centre, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia.

Published: November 2014

Infection control and wound healing profiles of sodium carboxymethylcellulose (SCMC) films were investigated as a function of their anti-bacterial action, physical structures, polymer molecular weights and carboxymethyl substitution degrees. The films were prepared with in vitro polymer/film and in vivo microbe-colonized wound healing/systemic infection profiles examined. Adhesive high carboxymethyl substituted SCMC films aided healing via attaching to microbes and removing them from wound. Pseudomonas aeruginosa was removed via encapsulating in gelling low molecular weight SCMC film, whereas Staphylococcus aureus was trapped in tight folds of high molecular weight SCMC film. Incomplete microbe removal from wound did not necessary translate to inability to heal as microbe remnant at wound induced fibroblast migration and aided tissue reconstruction. Using no film nonetheless will cause systemic blood infection. SCMC films negate infection and promote wound healing via specific polymer-microbe adhesion, and removal of S. aureus and P. aeruginosa requires films of different polymer characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2014.06.002DOI Listing

Publication Analysis

Top Keywords

scmc films
12
infection control
8
wound healing
8
molecular weight
8
weight scmc
8
scmc film
8
wound
7
infection
5
scmc
5
films
5

Similar Publications

Aim: This study aimed to formulate and characterize aceclofenac buccal film formulations made of different polymers and evaluate the effects of polymer type on buccal film properties.

Materials And Methods: Five polymer types, namely hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (SCMC), polyvinyl alcohol (PVA), Eudragit S100, and Eudragit SR100, were used to prepare aceclofenac buccal film formulation either separately or combined by solvent-casting method. These formulations were evaluated in terms of physical appearance, folding test, film weight and thickness, drug content, percentage of elongation, moisture uptake, water vapor permeability, and drug release.

View Article and Find Full Text PDF

Purpose: The goal of the present research was to isolate a biopolymer from Phaseolus vulgaris (P. vulgaris) and Zea mays (Z. mays) plants and used it to construct Resveratrol (RES)-loaded translabial films.

View Article and Find Full Text PDF

In this study, heparin-like polysaccharides were successfully produced by sulfation of carboxymethylcellulose sodium, then a fully biobased bilayer composed of sulfated carboxymethylcellulose sodium (SCMC) and chitosan (CS) was composited on the surface of Poly (L-lactic acid) (PLA) through layer-by-layer (LBL) assembly for the potential blood-contact application such as bioresorbable vascular scaffold. The preliminary structure and bioactivity of SCMC with different degree of sulfation were investigated, and the SCMC with best performance was selected. The surface chemical compositions, morphologies and wettability of SCMC/CS multilayer-modified PLA films were researched by X-ray photoelectron spectrometer, scanning electron microscopy and water contact angle meter.

View Article and Find Full Text PDF

The application of hydrophilic polymers in designing and three-dimensional (3D) printing of pharmaceutical products in various dosage forms has recently been paid much attention. Use of hydrophilic polymers and syringe extrusion 3D printing technology in the fabrication of orodispersible films (ODFs) might hold great potential in rapid drug delivery, personalized medicine, and manufacturing time savings. In this study, the feasibility of 3D-printed ODFs fabrication through a syringe extrusion 3D printing technique and using five different hydrophilic polymers (e.

View Article and Find Full Text PDF

Design and In Vitro/In Vivo Evaluation of Ultra-Thin Mucoadhesive Buccal Film Containing Fluticasone Propionate.

AAPS PharmSciTech

January 2017

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt.

Fluticasone propionate is a synthetic corticosteroid drug distinguished by its potent anti-inflammatory action with low systemic side effects in comparison to other corticosteroids making it a potential drug for local buccal delivery. The aim of the present study was to design mucoadhesive buccal film containing fluticasone that is aesthetically acceptable and could maintain local drug release for a sustained period to manage the sign and symptoms of severe erosive mouth lesions. Solvent casting technique was used in film preparation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!