Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties.

Carbohydr Polym

Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara, Turkey. Electronic address:

Published: November 2014

Surface modification and providing antibacterial properties to the materials or devices are getting great attention especially in the last decades. In this study, polyurethane (PU) films were prepared by synthesizing them in medical purity from toluene diisocyanate and polypropylene ethylene glycol without using any other ingredients and then the film surfaces were modified by covalent immobilization of chitosan (CH) which has antibacterial activity. CH immobilized PU films (PU-CH) were found to be more hydrophilic than control PU films. Electron Spectroscopy for Chemical Analysis (ESCA) and Atomic Force Microscopy (AFM) analyses showed higher nitrogen contents and rougher surface topography for PU-CH compared to PU films. Modification with CH significantly increased antibacterial activity against Gram positive (Staphylococcus aureus) and Gram negative (Pseudomonas aeruginosa) bacteria. It was observed that the number of bacteria colonies were less about 10(2)-10(5) CFU/mL and number of attached viable bacteria decreased significantly after CH modification of PU films.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2014.05.019DOI Listing

Publication Analysis

Top Keywords

surface modification
8
chitosan antibacterial
8
antibacterial properties
8
antibacterial activity
8
films
5
synthesis surface
4
modification
4
modification polyurethanes
4
polyurethanes chitosan
4
antibacterial
4

Similar Publications

The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.

View Article and Find Full Text PDF

With the ongoing development of osteoimmunology, increasing evidence indicates that the local immune microenvironment plays a critical role in various stages of bone formation. Consequently, modulating the immune inflammatory response triggered by biomaterials to foster a more favorable immune microenvironment for bone regeneration has emerged as a novel strategy in bone tissue engineering. This review first examines the roles of various immune cells in bone tissue injury and repair.

View Article and Find Full Text PDF

Metalloporphyrins on interfaces offer a rich playground for functional materials and hence have been subjected to intense scrutiny over the past decades. As the same porphyrin macrocycle on the same surface may exhibit vastly different physicochemical properties depending on the metal center and its substituents, it is vital to have a thorough structural and chemical characterization of such systems. Here, we explore the distinctions arising from coverage and macrocycle substituents on the closely related ruthenium octaethyl porphyrin and ruthenium tetrabenzo porphyrin on Ag(111).

View Article and Find Full Text PDF

Unlabelled: Ongoing research in biosensor technologies has led to advanced functional materials for healthcare diagnostics, and bacteriophages (phages), demonstrating exceptional utility due to their high specificity, accuracy, rapid, label-free, and wireless detection capabilities with minimal false-positive results. Phage-based-pathogen-detecting biosensors (PBPDBs) include surface plasmon resonance (SPR) biosensors, magnetoelastic (ME), electrochemical, and quartz crystal microbalance (QCM) biosensors. Commonly used substrates for PBPDBs are gold, silicon, glass, carbon-based materials, magnetic particles, and quantum dots.

View Article and Find Full Text PDF

Low performance and the high fouling tendency of Polyetherimide (PEI) membranes prevent their widespread commercial utility. In this study, we utilized a deep eutectic solvent (DES) as a versatile agent for surface modification of the PEI membrane using a simple and sustainable method. To attain an efficient PEI membrane, modeling and optimization of the modification condition were conducted via response surface methodology (RSM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!