A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Targeting the parahippocampal area by auditory cortex stimulation in tinnitus. | LitMetric

Targeting the parahippocampal area by auditory cortex stimulation in tinnitus.

Brain Stimul

School for Behavioral & Brain Sciences, University of Texas at Dallas, Dallas, USA; Department of Translational Neuroscience, Faculty of Medicine, University of Antwerp, Belgium.

Published: June 2015

Background: The final common pathway in tinnitus generation is considered to be synchronized auditory oscillatory hyperactivity. Intracranial auditory cortex stimulation (iACS) via implanted electrodes has been developed to treat severe cases of intractable tinnitus targeting this final common pathway, in the hope of being a panacea for tinnitus. However, not everybody responds to this treatment.

Objective: The electrical brain activity and functional connectivity at rest might determine who is going to respond or not to iACS and might shed light on the pathophysiology of auditory phantom sound generation.

Method: The resting state electrical brain activity of 5 patients who responded and 5 patients who did not respond to auditory cortex implantation are compared using source localized spectral activity (Z-score of log transformed current density) and lagged phase synchronization.

Results: sLORETA source localization reveals significant differences between responders vs non-responders for beta3 in left posterior parahippocampal, hippocampal and amygdala area extending into left insula. Gamma band differences exist in the posterior parahippocampal areas and BA10. Functional connectivity between the auditory cortex and the hippocampal area is increased for beta2, delta and theta2 in responders, as well as between the parahippocampal area and auditory cortex for beta3.

Conclusion: The resting state functional connectivity and activity between the auditory cortex and parahippocampus might determine whether a tinnitus patient will respond to a cortical implant. The auditory cortex may only be a functional entrance into a larger parahippocampal based tinnitus network.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2014.04.004DOI Listing

Publication Analysis

Top Keywords

auditory cortex
28
functional connectivity
12
auditory
9
parahippocampal area
8
area auditory
8
cortex stimulation
8
final common
8
common pathway
8
electrical brain
8
brain activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!