Defense against natural aggressors, such as bacterial infections, requires both energy and an immune-cellular response. However, the question as to how these two components are interconnected in small endotherms by means of the host diet remains only poorly understood. Here, we tested in laboratory mice whether dietary proteins and carbohydrates can modulate the interplay between energy expenditure, food intake and the innate and adaptive immune response when confronting a bacterial challenge (Bacillus Calmette-Guérin, BCG). We observed that mice fed with a high protein diet (HP) developed a better immune response associated to increased numbers of circulating monocytes. In addition, HP diet directly influenced the peripheral blood proportions of both T and B lymphocytes even before the BCG challenge. Interestingly, animals that developed this type of immune response after BCG challenge showed an increased rate of metabolism and food consumption before being challenged. Thus, HP diet induced in non-challenged animals a similar energy expenditure and food intake described by BCG-treated mice. These data suggest that a high amount of proteins in diet can modify the energetic and nutrient dynamic in the host causing a better immune reaction against a microbial challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00360-014-0852-x | DOI Listing |
Folia Microbiol (Praha)
January 2025
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
An essential task in spatial transcriptomics is identifying spatially variable genes (SVGs). Here, we present Celina, a statistical method for systematically detecting cell type-specific SVGs (ct-SVGs)-a subset of SVGs exhibiting distinct spatial expression patterns within specific cell types. Celina utilizes a spatially varying coefficient model to accurately capture each gene's spatial expression pattern in relation to the distribution of cell types across tissue locations, ensuring effective type I error control and high power.
View Article and Find Full Text PDFGut Microbes
December 2025
Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France.
Metabolic syndrome is, in humans, associated with alterations in the composition and localization of the intestinal microbiota, including encroachment of bacteria within the colon's inner mucus layer. Possible promoters of these events include dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), which, in mice, result in altered microbiota composition, encroachment, low-grade inflammation and metabolic syndrome. While assessments of gut microbiota composition have largely focused on fecal/luminal samples, we hypothesize an outsized role for changes in mucus microbiota in driving low-grade inflammation and its consequences.
View Article and Find Full Text PDFActa Med Indones
October 2024
Hematology Division, Department of Internal Medicine, Faculty of Medicine, Padjadjaran University - Hasan Sadikin Hospital, Bandung, Indonesia.
Background: Monocytes are evolutionarily preserved innate immune cells that play essential roles in immune response regulation. Three activated monocyte subsets-classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++)-are associated with systemic lupus erythematosus (SLE) progression. This study aims to determine the association of monocyte subsets with SLE disease activity.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
January 2025
T-cell immune response is an important component of antiviral immunity, it is of great significance to determine their absolute counts, relative frequencies and functionalities for evaluating protective immunity in individuals and population. However, there is a lack of guidelines or a consensus on assays for antigen-specific T cells. It is necessary to evaluate the SARS-CoV-2-specific T cells in population during and after COVID-19 epidemic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!