'Carba'-carfentanil (trans isomer): a μ opioid receptor (MOR) partial agonist with a distinct binding mode.

Bioorg Med Chem

Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Pharmacology, Université de Montréal, Montreal, QC H3C 3J7, Canada. Electronic address:

Published: September 2014

There is strong evidence to indicate that a positively charged nitrogen of endogenous and exogenous opioid ligands forms a salt bridge with the Asp residue in the third transmembrane helix of opioid receptors. To further examine the role of this electrostatic interaction in opioid receptor binding and activation, we synthesized 'carba'-analogues of the highly potent μ opioid analgesic carfentanil (3), in which the piperidine nitrogen was replaced with a carbon. The resulting trans isomer (8b) showed reduced, but still significant MOR binding affinity (Ki(μ)=95.2nM) with no MOR versus DOR binding selectivity and was a MOR partial agonist. The cis isomer (8a) was essentially inactive. A MOR docking study indicated that 8b bound to the same binding pocket as parent 3, but its binding mode was somewhat different. A re-evaluation of the uncharged morphine derivative N-formylnormorphine (9) indicated that it was a weak MOR antagonist showing no preference for MOR over KOR. Taken together, the results indicate that deletion of the positively charged nitrogen in μ opioid analgesics reduces MOR binding affinity by 2-3 orders of magnitude and may have pronounced effects on the intrinsic efficacy and on the opioid receptor selectivity profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149825PMC
http://dx.doi.org/10.1016/j.bmc.2014.07.033DOI Listing

Publication Analysis

Top Keywords

opioid receptor
12
trans isomer
8
mor
8
mor partial
8
partial agonist
8
binding mode
8
positively charged
8
charged nitrogen
8
mor binding
8
binding affinity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!