In this work, dual-templated hierarchical porous carbons (HPCs), produced from a coupled ice-hard templating approach, are shown to be a highly effective solution to the commonly occurring problem of irreversible fouling of low-pressure membranes used for pre-treatment in wastewater reuse. For the first time, dual-templated HPCs, along with their respective counterparts - single-templated meso-porous carbon (MPCs) (without macropores) - are tested in terms of their fouling reduction capacity and ability to remove different effluent organic matter fractions present in wastewater and compared with a commercially available powdered activated carbon (PAC). The synthesized HPCs provided exceptional fouling abatement, a 4-fold higher fouling reduction as compared to the previously reported best performing commercial PAC and ∼2.5-fold better fouling reduction than their respective mesoporous counterpart. Thus, it is shown that not only mesoporosity, but macroporosity is also necessary to achieve high fouling reduction, thus emphasizing the need for dual templating. In the case of HPCs, the pre-deposition technique is also found to outperform the traditional sorbent-feed mixing approach, mainly in terms of removal of fouling components. Based on their superior performance, a high permeability (ultra-low-pressure) membrane consisting of the synthesized HPC pre-deposited on a large pore size membrane support (0.45 μm membrane), is shown to give excellent pre-treatment performance for wastewater reuse application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2014.07.031 | DOI Listing |
Materials (Basel)
December 2024
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China.
Polypropylene (PP) membranes have found diverse applications, such as in wastewater treatment, lithium-ion batteries, and pharmaceuticals, due to their low cost, excellent mechanical properties, thermal stability, and chemical resistance. However, the intrinsic hydrophobicity of PP materials leads to membrane fouling and filtration flux reduction, which greatly hinders the applications of PP membranes. Dielectric barrier discharge (DBD) is an effective technique for surface modification of materials because it generates a large area of low-temperature plasma at atmospheric pressure.
View Article and Find Full Text PDFWater Res
January 2025
Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea. Electronic address:
Food waste condensate (FWC) is a valuable source for recovering short-chain fatty acids (SCFAs) through methods such as supported liquid membrane contactors. Containing organic compounds like acetate, propionate, and butyrate, FWC offers a rich substrate for efficient SCFA extraction. Recovering SCFAs from FWC provides notable environmental advantages, including reducing waste and generating high-value products for industries such as bioenergy and chemical production.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark. Electronic address:
The efficiency of ultrafiltration (UF) of acidified skim milk (SM) is impaired by protein aggregation and mineral scaling. The aim of this study is to assess the potential of acidification by electrodialysis with bipolar membranes (EDBM), in comparison with citric acid (CA), prior to the UF process on filtration performance, fouling and composition of the protein concentrates. Electro-acidification, facilitated by a water-splitting reaction, decreased the pH of milk to ∼ 5.
View Article and Find Full Text PDFACS Omega
December 2024
Key Laboratory of Enhanced Oil Recovery, Northeast Petroleum University, Daqing, Heilongjiang 163000, China.
After many years of mining in the Fang2 block of the Songfangtun oilfield, the conventional water drive development method can no longer meet the requirement of greatly improving the recovery rate, and ternary composite drive (TCD) technology is adopted for this purpose. TCD is one of the most important methods to further improve crude oil recovery, and it has entered the industrialization and promotion stage, but there are still problems of fouling in the injection and extraction system and high production and maintenance costs. In order to reduce formation damage and improve recovery in the Songfangtun oilfield, an alkali-free microemulsion system was developed by replacing the weak base sodium carbonate with sodium chloride, but its emulsification capacity was weak and the recovery enhancement value was lower than that of the weak base TCD.
View Article and Find Full Text PDFWater Res
December 2024
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!